Results 61 to 70 of about 20,652,710 (339)
Restoration of dimensional reduction in the random-field Ising model at five dimensions. [PDF]
The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory.
N. Fytas+3 more
semanticscholar +1 more source
Ising model on the affine plane
We demonstrate that the Ising model on a general triangular graph with 3 distinct couplings $K_1,K_2,K_3$ corresponds to an affine transformed conformal field theory (CFT). Full conformal invariance of the $c= 1/2$ minimal CFT is restored by introducing a metric on the lattice through the map $\sinh(2K_i) = \ell^*_i/ \ell_i$ which relates critical ...
Richard C. Brower, Evan K. Owen
openaire +2 more sources
A general learning scheme for classical and quantum Ising machines
An Ising machine is any hardware specifically designed for finding the ground state of the Ising model. Relevant examples are coherent Ising machines and quantum annealers. In this paper, we propose a new machine learning model that is based on the Ising
Ludwig Schmid, Enrico Zardini, Davide Pastorello
doaj +1 more source
Systems with nonreciprocal interactions generically display time-dependent states. These are routinely observed in finite systems, from neuroscience to active matter, in which globally ordered oscillations exist. However, the stability of these uniform nonreciprocal phases in noisy spatially-extended systems, their fate in the thermodynamic limit, and ...
Yael Avni+4 more
openaire +3 more sources
The Ising model and special geometries [PDF]
33 ...
Boukraa, S., Hassani, S., Maillard, J.M.
openaire +4 more sources
Ising’s Roots and the Transfer-Matrix Eigenvalues
Today, the Ising model is an archetype describing collective ordering processes. As such, it is widely known in physics and far beyond. Less known is the fact that the thesis defended by Ernst Ising 100 years ago (in 1924) contained not only the solution
Reinhard Folk, Yurij Holovatch
doaj +1 more source
Random currents expansion of the Ising model [PDF]
Critical behavior at an order/disorder phase transition has been a central object of interest in statistical physics. In the past century, techniques borrowed from many different fields of mathematics (Algebra, Combinatorics, Probability, Complex ...
H. Duminil-Copin
semanticscholar +1 more source
Quantum correlations in the Kerr Ising model
In this article we present a full description of the quantum Kerr Ising model—a linear optical network of parametrically pumped Kerr nonlinearities. We consider the non-dissipative Kerr Ising model and, using variational techniques, show that the energy ...
M J Kewming, S Shrapnel, G J Milburn
doaj +1 more source
Review of Recent Developments in the Random-Field Ising Model [PDF]
A lot of progress has been made recently in our understanding of the random-field Ising model thanks to large-scale numerical simulations. In particular, it has been shown that, contrary to previous statements: the critical exponents for different ...
N. Fytas+3 more
semanticscholar +1 more source
Bootstrapping the Three Dimensional Supersymmetric Ising Model. [PDF]
We implement the conformal bootstrap program for three dimensional conformal field theories with N=2 supersymmetry and find universal constraints on the spectrum of operator dimensions in these theories.
Nikolay Bobev+3 more
semanticscholar +1 more source