Results 121 to 130 of about 405,972 (276)
Fe─NC porous oxygen reduction electrocatalysts are prepared employing a 2,4,6‐Triaminopyrimidine‐based porous organic polymer, a Mg2+ Lewis acid, and a low‐temperature cation exchange protocol. Using the polymer precursor achieves high pyrolysis yields and results in atomically dispersed FeNx sites. The resulting catalysts feature hierarchical porosity
Eliot Petitdemange +11 more
wiley +1 more source
Godwin Attah Obande,1,2 Kirnpal Kaur Banga Singh1 1Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia; 2Department of Microbiology, Faculty of Science, Federal ...
Obande GA, Banga Singh KK
doaj
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source
In situ monitoring of bulk photoalignment reveals how molecular weight, azobenzene content, cooling rate, and thickness govern ordering in main‐chain liquid crystalline polymers. Optimized copolymers exceed conventional thickness limits, maintaining stable alignment up to 130 µm with high energy efficiency and reversible optical patterning.
Jaechul Ju +3 more
wiley +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source
An oral nanoplatform, MOP@T@D, which can maintain glucose homeostasis and restore islet β cells in diabetic rats is developed. It achieves efficient intestinal absorption and liver‐targeted delivery. The nanoparticle disintegrates only in response to hyperglycemia to release insulin on demand and provides antioxidant protection through selenoprotein ...
Chenxiao Chu +14 more
wiley +1 more source
[NiFe]‐hydrogenases efficiently catalyze hydrogen conversion, but their instability limits biotechnological applications. Here it is shown that encapsulating hydrogenase into hierarchical COFs with macro‐ and micropores and functionalized with sulfonic or carboxylic acid groups improves enzyme stability and electron transfer to electrodes.
Islam E. Khalil +12 more
wiley +1 more source
Enzymatically crosslinked gelatin‐based organohydrogels, fabricated through a fully bio‐based and scalable process, exhibit exceptional strain and temperature sensing capabilities with minimal interference from environmental humidity. These transparent, stretchable, and ionically conductive materials operate without synthetic fillers or dopants.
Pietro Tordi +7 more
wiley +1 more source
Synthetic Nanobiology Actuated Lipometabolic Cell Factory for Autologous Tumor Immunotherapy
FA plays a crucial role in the interaction between tumor cells and the tumor microenvironment, especially for the immune response. A biocatalytic immunoenhancement strategy is developed to boost antitumor immunity by FA metabolic orientation to ceramide. Through the design of this delicate catalytic immunoenhancement strategy, the synthetic nanobiology
Shoujie Zhao +8 more
wiley +1 more source
Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner +9 more
wiley +1 more source

