Results 171 to 180 of about 60,257 (227)

Periodic motion representing isotropic turbulence

open access: yesPeriodic motion representing isotropic turbulence
openaire  
Some of the next articles are maybe not open access.

Related searches:

Superstatistics and isotropic turbulence

Physica A: Statistical Mechanics and its Applications, 2021
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
E. Gravanis   +3 more
openaire   +3 more sources

Similarity Spectra in Isotropic Turbulence

The Physics of Fluids, 1959
Similarity solutions are given for the energy spectrum and transfer function in the initial period of decay for a range of values of the Reynolds number using the transfer theory suggested by Kovásznay. Because of the simple form of the theory, the solution can be obtained in closed form for all values of the Reynolds number, and this exact solution is
Reid, W. H., Harris, D. L.
openaire   +2 more sources

Compressible Homogeneous Isotropic Turbulence

2018
This chapter is devoted to isotropic incompressible turbulence. The main features of related theories are discussed, along with the recent results: energy spectrum and two-point correlations and related models, closures for non-linear terms in both physical and Fourier space, theories for grid turbulence decay including fractal grid case, non ...
Pierre Sagaut, Claude Cambon
openaire   +1 more source

Time-dependent isotropic turbulence

Journal of Turbulence, 2004
Homogeneous isotropic turbulence subject to linearly increasing forcing is investigated as a unit problem for statistically unsteady turbulence. The transient spectral dynamics is analysed using a closure theory. A long time asymptotic state is found with k −7/3 corrections to the energy spectrum as proposed by Yoshizawa. Although the cancellation of O(
Robert Rubinstein   +3 more
openaire   +1 more source

Heat Transfer in Isotropic Turbulence

Journal of Applied Physics, 1952
The postulated problem of heat transfer in a stationary isotropic turbulence under constant small temperature gradient is examined from both Lagrangian and Eulerian points of view. By combination of Taylor's ``diffusion by continuous movements'' and a new temperature fluctuation equation somewhat like the wellknown turbulent energy equation, it is ...
openaire   +1 more source

Homogeneous and Isotropic Turbulence

2015
The study of homogeneous and isotropic turbulence is very rewarding for two reasons. On the one hand, it is possible to do an important part of it analytically, and on the other hand, the smallest turbulent structures in most turbulent flows have an almost isotropic behaviour.
Christophe Bailly   +1 more
openaire   +1 more source

Homogeneous isotropic turbulence in dilute polymers

Journal of Fluid Mechanics, 2005
The modification of the turbulent cascade by polymeric additives is addressed by direct numerical simulations of homogeneous isotropic turbulence of a FENE-P fluid. According to the appropriate form of the Kármán–Howarth equation, two kinds of energy fluxes exist, namely the classical transfer term and the coupling with the polymers.
DE ANGELIS, ELISABETTA   +3 more
openaire   +5 more sources

Homogeneous Isotropic Turbulence

1977
Many theoretical investigations of turbulence have been developed around the concept of homogeneous, isotropic turbulence — turbulence of which the statistical properties do not vary with position and have no preferred direction. An approximation to such a motion can be obtained behind a grid, such as the one shown in Fig. 21.1, in a wind-tunnel.
openaire   +1 more source

Intermittency of acceleration in isotropic turbulence

Physical Review E, 2005
The intermittency of acceleration is investigated for isotropic turbulence using direct numerical simulation. Intermittently found acceleration of large magnitude always points towards the rotational axis of a vortex filament, indicating that the intermittency of acceleration is associated with the rotational motion of the vortices that causes ...
Sang, Lee, Changhoon, Lee
openaire   +2 more sources

Home - About - Disclaimer - Privacy