Results 91 to 100 of about 561 (100)
Some of the next articles are maybe not open access.
On some general inequalities of the Jensen-Steffensen type
2008We present a pair of general inequalities related to the Jensen-Steffensen inequality for convex functions. We show that the discrete Jensen-Steffensen inequality, as well as a discrete Slater type inequality, can be obtained from these general inequalities as their special cases. We also prove that one of our general companion inequalities, under some
Klaričić Bakula, Milica +2 more
openaire +1 more source
Jensen-Steffensen inequality: old and new
2016{;Let $I$ be an interval in $\mathbb{;R};$ and $f:I\rightarrow \mathbb{;R};$ a convex function on $I$.\ If $\boldsymbol{;\xi };=\left( \xi _{;1};, \cdots , \xi _{;m};\right) $ is any $m$-tuple in $I^{;m};$ and $\boldsymbol{;p};=\left( p_{;1};, \cdots , p_{;m};\right) $ any nonnegative $m$-tuple such that $% \sum_{;i=1};^{;m};p_{;i};>0$, then the well ...
openaire +1 more source
Conversions of the Jensen-Steffensen and Jensen-Mercer inequalities
2010We establish conversions of the Jensen-Steffensen and Jensen-Mercer inequalities. We also use so caled exp-convex method to obtain some new inequalities related to those converse inequalities.
Klaričić Bakula, Milica +2 more
openaire +1 more source
Advances in Mathematics, 2015
In this paper, using majorization theorems and Hermite's interpolating polynomials we obtain results concerning Jensen's and Jensen- Steffensen's inequalities and their converses in both the integral and the discrete case. We give bounds for identities related to these inequalities by using \v{; ; ; C}; ; ; eby\v{; ; ; s}; ; ; ev functionals.
Pečarić, Josip +2 more
openaire +2 more sources
In this paper, using majorization theorems and Hermite's interpolating polynomials we obtain results concerning Jensen's and Jensen- Steffensen's inequalities and their converses in both the integral and the discrete case. We give bounds for identities related to these inequalities by using \v{; ; ; C}; ; ; eby\v{; ; ; s}; ; ; ev functionals.
Pečarić, Josip +2 more
openaire +2 more sources
On the bounds for the normalized Jensen functional and Jensen-Steffensen inequality
2016We consider the inequalities for normalized Jensen functional, recently introduced by S.S. Dragomir. We give an alternative proof of such inequalities and prove another similar result for the case when f is a convex function on an interval in the real line, while p and q satisfy the conditions for Jensen-Steffensen inequality.
Barić, Josipa, Pečarić, Josip
openaire
Generalizations and refinements of the Jensen-Steffensen and its associated inequalities
2011U disertaciji je razmatrana Jensen-Steffensenova i njoj srodne nejednakosti. Dan je niz profinjenja i poopćenja u različitim prostorima za razne klase funkcija nejednakosti Jensen-Steffensenova tipa te srodnih rezultata. Disertacija je podijeljena u šest poglavlja.
openaire
On a Version of Jensen-Steffensen Inequality and a Note on Inequalities in Several Variables
2023openaire +1 more source
In this paper majorization theorems specifically formulated for divided differences are introduced and thoroughly discussed. A refined version of the Jensen-Steffensen inequality for divided differences is also derived, employing a novel approach to demonstrate the Jensen-Steffensen conditions.
openaire
openaire
Reversals, Refinements, and Converses of Jensen's and Jensen–Steffensen's Inequalities
1992openaire +1 more source

