Results 231 to 240 of about 23,175 (311)

Rational Fine‐Tuning of MOF Pore Metrics: Enhanced SO2 Capture and Sensing with Optimal Multi‐Site Interactions

open access: yesAdvanced Functional Materials, EarlyView.
A pore tuning strategy to amplify the multi‐site MOF‐SO2 interactions is proposed to achieve an enhanced trace SO2 capture and chemiresistive sensing in highly stable isostructural DMOFs by annelating benzene rings. This work provides a facile strategy to achieve tailor‐made stable MOF materials for specific multifunctional applications.
Shanghua Xing   +9 more
wiley   +1 more source

Precise Quantification of Angiogenesis in 3D Biomaterials Using in Vitro CAM Models: Enhancing 3Rs in Research and Minimizing in Vivo Dependency

open access: yesAdvanced Functional Materials, EarlyView.
The study develops elastin–fibrin scaffolds and evaluates angiogenesis using the chorioallantoic membrane (CAM) model. Advanced imaging with confocal microscopy and Indocyanine Green dye enables precise 3D quantification of vascular networks. Findings demonstrate superior microvessel visualization compared to micro‐CT using Microfil and Optiray 350 ...
Ece Melis Er   +8 more
wiley   +1 more source

Enhancing CoFe Catalysts with V2CTX MXene‐Derived Materials for Anion Exchange Membrane Electrolyzers

open access: yesAdvanced Functional Materials, EarlyView.
MXene dervied CoFe composites show increased initial Oxygen Evolution Reaction (OER) activity compared to the pure CoFe and MXene in an Anion Exchange Membrane device. Vanadium vacancies in the MXene plays a role in increased OER activity and hinders Fe leaching in the AEM device over using the pure V2C MXene as a support material for the CoFe ...
Can Kaplan   +16 more
wiley   +1 more source

Engineering Porous Hollow Metal‐Poly(Heptazine Imide) Spheres: An Optimized Synthetic Strategy for Controlling Surface, Morphology, and Properties

open access: yesAdvanced Functional Materials, EarlyView.
Hollow poly(heptazine imide) spheres are prepared through a novel approach that integrates hard templating with ionothermal synthesis. This method enables precise control over surface area, pore volume, hydrophilicity, light absorption, band position, and metal composition. These tunable properties facilitate the customized design of semiconductors for
Lingli Ni   +10 more
wiley   +1 more source

All‐in‐One Analog AI Hardware: On‐Chip Training and Inference with Conductive‐Metal‐Oxide/HfOx ReRAM Devices

open access: yesAdvanced Functional Materials, EarlyView.
An all‐in‐one analog AI accelerator is presented, enabling on‐chip training, weight retention, and long‐term inference acceleration. It leverages a BEOL‐integrated CMO/HfOx ReRAM array with low‐voltage operation (<1.5 V), multi‐bit capability over 32 states, low programming noise (10 nS), and near‐ideal weight transfer.
Donato Francesco Falcone   +11 more
wiley   +1 more source

Rationally Designed Carbon Nanomaterials for Electrically Driven Solid‐State Hydrogen Storage

open access: yesAdvanced Functional Materials, EarlyView.
A bottom‐up design principle integrating atomic‐level and nanoscale structural engineering is developed to guide the rational design of electrically tunable, solid‐state hydrogen storage materials that enable non‐dissociative chemisorption under applied electric fields.
Yong Gao   +30 more
wiley   +1 more source

Home - About - Disclaimer - Privacy