Results 181 to 190 of about 4,347,136 (363)

Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations

open access: yesAdvanced Functional Materials, EarlyView.
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan   +4 more
wiley   +1 more source

Low-Damage Friction Connections in Hybrid Joints of Frames of Reinforced-Concrete Buildings [PDF]

open access: gold, 2023
Piero Colajanni   +3 more
openalex   +1 more source

Tetrahedral Tilting and Lithium‐Ion Transport in Halide Argyrodites Prepared by Rapid, Microwave‐Assisted Synthesis

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a rapid, microwave‐assisted synthetic method for halide argyrodite solid‐state electrolytes Li6PS5X${\rm Li}_6 {\rm PS}_5X$ (X=$X =$ Cl−${\rm Cl}^-$, Br−${\rm Br}^-$, I−${\rm I}^-$). Microwave synthesis increases S2−${\rm S}^{2-}$/X−$X^-$ site disorder and rotational disorder of the isolated PS43−${{\mathrm{PS}}_{4}}^{3 ...
Austin M. Shotwell   +4 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Integration of Perovskite/Low‐Dimensional Material Heterostructures for Optoelectronics and Artificial Visual Systems

open access: yesAdvanced Functional Materials, EarlyView.
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy