Results 1 to 10 of about 3,712 (309)
Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras
In this paper, we investigate Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras over the field of real numbers. We prove that every Jordan semi-triple derivation on generalized quaternion algebras over the field of
Ai-qun Ma, Lin Chen, Zijie Qin
doaj +2 more sources
Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra [PDF]
We investigate Jordan automorphisms and Jordan derivations of a class of algebras called generalized triangular matrix algebras. We prove that any Jordan automorphism on such an algebra is either an automorphism or an antiautomorphism and any Jordan ...
Aiat Hadj Ahmed Driss +1 more
doaj +3 more sources
Local derivations on Jordan triples [PDF]
R.V. Kadison defined the notion of local derivation on an algebra and proved that every continuous local derivation on a von Neumann algebra is a derivation (Kadison 1990). We provide the analogous result in the setting of Jordan triples.
Michael Mackey
openalex +5 more sources
Jordan derivations on semiprime rings [PDF]
I. N. Herstein has proved that any Jordan derivation on a 2 2 -torsion free prime ring is a derivation. In this paper we prove that Herstein’s result is true in 2 2 -torsion free semiprime rings. This result makes it possible for us to prove that any linear Jordan derivation on a semisimple Banach algebra is continuous,
Matej Brešar
openalex +2 more sources
Generalized Jordan derivations on semiprime rings [PDF]
The purpose of this note is to prove the following. Suppose $\mathfrak{R}$ is a semiprime unity ring having an idempotent element $e$ ($e\neq 0,~e\neq 1$) which satisfies mild conditions. It is shown that every additive generalized Jordan derivation on $\mathfrak{R}$ is a generalized derivation.
Bruno Leonardo Macedo Ferreira
openalex +3 more sources
In this note we proved that each nonlinear generalized semi-Jordan triple derivable mapping on completely distributive commutative subspace lattice algebras is an additive derivation.
Fei Ma +3 more
doaj +2 more sources
Jordan Derivations and Lie derivations on Path Algebras [PDF]
Without the faithful assumption, we prove that every Jordan derivation on a class of path algebras of quivers without oriented cycles is a derivation and that every Lie derivation on such kinds of algebras is of the standard form.
Yanbo Li, Feng Wei
openalex +5 more sources
Higher Jordan triple derivations on ∗-type trivial extension algebras
In this paper, we investigated the problem of describing the form of higher Jordan triple derivations on trivial extension algebras. We show that every higher Jordan triple derivation on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum ...
Xiuhai Fei +3 more
doaj +2 more sources
Derivations of Jordan algebras [PDF]
Bruno Harris
openalex +4 more sources
On Functional Inequalities Originating from Module Jordan Left Derivations
We first examine the generalized Hyers-Ulam stability of functional inequality associated with module Jordan left derivation (resp., module Jordan derivation). Secondly, we study the functional inequality with linear Jordan left derivation (resp., linear
Ick-Soon Chang +2 more
doaj +2 more sources

