Results 71 to 80 of about 23,042 (190)
Jordan Manifolds and Dispersionless KdV Equations [PDF]
Multicomponent KdV-systems are defined in terms of a set of structure constants and, as shown by Svinolupov, if these define a Jordan algebra the corresponding equations may be said to be integrable, at least in the sense of having higher-order symmetries, recursion operators and hierarchies of conservation laws. In this paper the dispersionless limits
openaire +3 more sources
ABSTRACT This study presents a new optimized block hybrid method and spectral simple iteration method (OBHM‐SSIM) for solving nonlinear evolution equations. In this method, we employed a combination of the spectral collocation method in space and the optimized block hybrid method in time, along with a simple iteration scheme to linearize the equations.
Salma Ahmedai +4 more
wiley +1 more source
This work introduces two (3+1)-dimensional expansions of the Korteweg–de Vries (KdV) and modified KdV (mKdV) equations. These extensions incorporate a second-order time-derivative term, similar to the Boussinesq equation. The Painlevé test is utilized to
Abdul-Majid Wazwaz +3 more
doaj +1 more source
Loop groups and equations of KdV type [PDF]
This paper deals with a construction of solutions of KdV-type equations through infinite dimensional Grassmannian constructions initiated by M. Sato. \textit{M. Sato} and \textit{Y. Sato} [Nonlinear partial differential equations in applied science, Proc. U.S.-Jap. Semin., Tokyo 1982, North-Holland Math. Stud.
Segal, G, Wilson, G
openaire +3 more sources
Physically Guided GAN‐Based Super Resolution of Buoy Observations for Internal Solitary Waves
Abstract Accurate monitoring of internal solitary waves (ISWs) is crucial for understanding their influence on ocean mixing and energy transfer. Satellite observations offer a powerful tool for large‐scale ISW monitoring, but they mainly detect surface signatures and thus require nearby in situ measurements for validation and amplitude estimation ...
Xudong Zhang +3 more
wiley +1 more source
Abstract We study convergence problems for the intermediate long wave (ILW) equation, with the depth parameter δ>0$\delta > 0$, in the deep‐water limit (δ→∞$\delta \rightarrow \infty$) and the shallow‐water limit (δ→0$\delta \rightarrow 0$) from a statistical point of view.
Guopeng Li, Tadahiro Oh, Guangqu Zheng
wiley +1 more source
Bilinear Approach to Supersymmetric KdV Equation [PDF]
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +3 more sources
Predicting Systemic and Liver Bosentan Exposure Using Physiologically‐Based Pharmacokinetic Modeling
ABSTRACT Bosentan is the first approved oral medication for pulmonary arterial hypertension, yet the black‐box warning on its labeling implies a substantial risk of liver injury associated with bosentan exposure. The risk assessment of bosentan‐induced liver injury requires a thorough understanding of the underlying mechanisms, for which there is ...
Miao‐Chan Huang +6 more
wiley +1 more source
Time-Fractional KdV Equation: Formulation and Solution using Variational Methods
In this work, the semi-inverse method has been used to derive the Lagrangian of the Korteweg-de Vries (KdV) equation. Then, the time operator of the Lagrangian of the KdV equation has been transformed into fractional domain in terms of the left-Riemann ...
A. A. Mahmoud +43 more
core +1 more source
ABSTRACT Aims Investigate the perception of male accessibility to the fields of nursing practice by those studying or teaching nursing in England. Design Cross‐sectional survey. Methods Online questionnaire with three closed‐scale questions and two open‐text questions designed to elicit perceptions on the accessibility of men to the fields of nursing ...
Daniel Carter +5 more
wiley +1 more source

