Results 21 to 30 of about 725,384 (331)

Efficient linearization of tree kernel functions [PDF]

open access: yesProceedings of the Thirteenth Conference on Computational Natural Language Learning - CoNLL '09, 2009
The combination of Support Vector Machines with very high dimensional kernels, such as string or tree kernels, suffers from two major drawbacks: first, the implicit representation of feature spaces does not allow us to understand which features actually triggered the generalization; second, the resulting computational burden may in some cases render ...
Pighin, Daniele, Moschitti, Alessandro
openaire   +2 more sources

Histograma orientado a gradientes con máquina de soporte vectorial, en la clasificación del alfabeto dactilológico

open access: yesRevista Tecnológica, 2017
El objetivo del trabajo fue evaluar la eficiencia del clasificador Máquina de Soporte Vectorial (SVM) con el método de separación linear, cuando se utiliza el algoritmo de extracción de características Histograma Orientado a Gradientes (HOG) y cuando no ...
Jessica Johanna Morales Carrillo
doaj   +4 more sources

Weighted p-norm distance t kernel SVM classification algorithm based on improved polarization

open access: yesScientific Reports, 2022
The kernel function in SVM enables linear segmentation in a feature space for a large number of linear inseparable data. The kernel function that is selected directly affects the classification performance of SVM.
Wenbo Liu, Shengnan Liang, Xiwen Qin
doaj   +1 more source

Linear Kernel for Planar Connected Dominating Set [PDF]

open access: yesTheoretical Computer Science, 2009
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Lokshtanov, D., Mnich, M., Saurabh, S.
openaire   +2 more sources

Self-Expressive Kernel Subspace Clustering Algorithm for Categorical Data with Embedded Feature Selection

open access: yesMathematics, 2021
Kernel clustering of categorical data is a useful tool to process the separable datasets and has been employed in many disciplines. Despite recent efforts, existing methods for kernel clustering remain a significant challenge due to the assumption of ...
Hui Chen   +3 more
doaj   +1 more source

Comparison of Phishing Detection Tests using the SVM Method with RBF and Linear Kernels

open access: yesSistemasi: Jurnal Sistem Informasi, 2023
Phising adalah sebuah tindakan kriminal untuk mencuri informasi pribadi orang lain menggunakan entitas electronic, salah satunya adalah website. Informasi ini dicuri dari website yang telah diakses yang mengandung phising atau dengan kata lain masuk ke ...
Rumini Rumini   +3 more
doaj   +1 more source

Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials

open access: yesG3: Genes, Genomes, Genetics, 2019
Kernel methods are flexible and easy to interpret and have been successfully used in genomic-enabled prediction of various plant species. Kernel methods used in genomic prediction comprise the linear genomic best linear unbiased predictor (GBLUP or GB ...
Jaime Cuevas   +8 more
doaj   +1 more source

Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter

open access: yesIlkom Jurnal Ilmiah, 2021
Sentiment analysis is a technique to extract information of ones perception, called sentiment, on an issue or event. This study employs sentiment analysis to classify societys response on covid-19 virus posted at twitter into 4 polars, namely happy, sad,
Rifqatul Mukarramah   +2 more
doaj   +1 more source

Support Vector Machines in High Energy Physics [PDF]

open access: yes, 2008
This lecture will introduce the Support Vector algorithms for classification and regression. They are an application of the so called kernel trick, which allows the extension of a certain class of linear algorithms to the non linear case.
Vossen, Anselm
core   +2 more sources

The Augmented Complex Kernel LMS

open access: yes, 2011
Recently, a unified framework for adaptive kernel based signal processing of complex data was presented by the authors, which, besides offering techniques to map the input data to complex Reproducing Kernel Hilbert Spaces, developed a suitable Wirtinger ...
Bouboulis, Pantelis   +2 more
core   +1 more source

Home - About - Disclaimer - Privacy