Results 21 to 30 of about 218 (135)

Predictive modeling of COVID-19 death cases in Pakistan. [PDF]

open access: yesInfect Dis Model, 2020
Background The world is presently facing the challenges posed by COVID-19 (2019-nCoV), especially in the public health sector, and these challenges are dangerous to both health and life.
Daniyal M   +4 more
europepmc   +3 more sources

Modified Kibria–Lukman Estimator for the Conway–Maxwell–Poisson Regression Model: Simulation and Application

open access: yesMathematics
This study presents a novel estimator that combines the Kibria–Lukman and ridge estimators to address the challenges of multicollinearity in Conway–Maxwell–Poisson (COMP) regression models.
Nasser A. Alreshidi   +4 more
doaj   +2 more sources

Mitigating multicollinearity in zero-inflated negative binomial regression using the modified Kibria-Lukman estimator

open access: yesAIMS Mathematics
Multicollinearity presents a significant challenge in zero-inflated negative binomial (ZINB) regression, leading to unstable maximum likelihood estimates (MLEs) and inflated prediction errors. To address this issue, we investigated the performance of the
Masad A. Alrasheedi   +3 more
doaj   +2 more sources

Handling Multicollinearity and Outliers in Logistic Regression Using the Robust Kibria–Lukman Estimator

open access: yesAxioms
Logistic regression models encounter challenges with correlated predictors and influential outliers. This study integrates robust estimators, including the Bianco–Yohai estimator (BY) and conditionally unbiased bounded influence estimator (CE), with the ...
Adewale F. Lukman   +3 more
doaj   +2 more sources

Quantile-based robust Kibria–Lukman estimator for linear regression model to combat multicollinearity and outliers: Real life applications using T20 cricket sports and anthropometric data

open access: yesKuwait Journal of Science
The performance of ordinary least squares (OLS) and ridge regression (RR) are influenced when outliers are present in y-direction with multicollinearity among independent variables. The robust RR with ridge parameters provides a biased estimator that has
Danish Wasim   +7 more
doaj   +2 more sources

Predictive Performance Evaluation of the Kibria-Lukman Estimator

open access: yesWSEAS TRANSACTIONS ON MATHEMATICS, 2022
Regression models are commonly used in prediction, but their predictive performances may be affected by the problem called the multicollinearity. To reduce the effect of the multicollinearity, different biased estimators have been proposed as alternatives to the ordinary least squares estimator.
Issam Dawoud   +2 more
openaire   +1 more source

New Robust Estimators for Handling Multicollinearity and Outliers in the Poisson Model: Methods, Simulation and Applications

open access: yesAxioms, 2022
The Poisson maximum likelihood (PML) is used to estimate the coefficients of the Poisson regression model (PRM). Since the resulting estimators are sensitive to outliers, different studies have provided robust Poisson regression estimators to alleviate ...
Issam Dawoud   +3 more
doaj   +1 more source

A new hybrid estimator for linear regression model analysis: Computations and simulations

open access: yesScientific African, 2023
The Linear regression model explores the relationship between a response variable and one or more independent variables. The parameters in the model are often estimated using the Ordinary Least Square Estimator (OLSE).
G.A. Shewa, F.I. Ugwuowo
doaj   +1 more source

Robust biased estimators for Poisson regression model: Simulation and applications

open access: yesConcurrency and Computation: Practice and Experience, Volume 35, Issue 7, 25 March 2023., 2023
Summary The method of maximum likelihood flops when there is linear dependency (multicollinearity) and outlier in the generalized linear models. In this study, we combined the ridge estimator with the transformed M‐estimator (MT) and the conditionally unbiased bounded influence estimator (CE).
Adewale F. Lukman   +2 more
wiley   +1 more source

Jackknifing K-L estimator in Poisson regression model [PDF]

open access: yes, 2022
At the point when there is collinearity between the reaction variable and various illustrative factors, displaying the connection between the reaction variable and a few informative factors is troublesome.
Algamal, Zakariya Yahya, Hamad, Abed Ali
core   +2 more sources

Home - About - Disclaimer - Privacy