Results 241 to 250 of about 2,179,837 (297)

Ostwald Process Intensification by Catalytic Oxidation of Nitric Oxide

open access: yesACS Omega
Jithin Gopakumar   +6 more
doaj   +1 more source

Deformation and Degradation in 18650 Li‐Ion Cells Under Freeze‐Thaw Cycling

open access: yesAdvanced Functional Materials, EarlyView.
This study investigates the impact of freezethaw degradation of 18650 cells via combined electrochemical and x‐ray imaging studies. High‐resolution synchrotron X‐ray tomography reveals deformation of the jelly‐roll structure and delamination of electrode active materials in cells cycled at 1C and 4C. These structural changes are quantitatively assessed
Xunkai Chen   +5 more
wiley   +1 more source

Solvent‐Free Bonding Mechanisms and Microstructure Engineering in Dry Electrode Technology for Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang   +7 more
wiley   +1 more source

Enantioconvergent Access to Chiral S(VI) Stereocenters by Kinetic Resolution of Sulfonimidoyl Chlorides. [PDF]

open access: yesAngew Chem Int Ed Engl
Das A   +10 more
europepmc   +1 more source

Dual‐Functional Additive Regulating Zn2+ Solvation Structure and (002) Plane‐Oriented Deposition for Dendrite‐Free Zn Anodes

open access: yesAdvanced Functional Materials, EarlyView.
Sulfosalicylic acid (SSA) is introduced as a bifunctional additive for Aqueous zinc‐ion batteries. SSA reconstructs the solvation structure of Zn2+ through the synergistic effects of its multiple functional groups, suppressing side reactions while selectively promoting Zn (002) deposition to prevent dendrite formation.
Le Gao   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy