Results 291 to 300 of about 12,811,711 (369)
Ternary Synergy in Layered Double Hydroxides for Efficient and Stable Nitrate Reduction
Ternary CuZnFe LDH enables efficient electrocatalytic nitrate‐to‐ammonia conversion via controlled in situ reconstruction: zinc leaching creates porous active sites, copper reduced to metallic copper, while iron oxide keeps stable. Synergistic Cu‐Fe redox coupling drives tandem catalysis (nitrate→nitrite→NH3), achieving 95% Faraday efficiency and ...
Jiaqian Kang+9 more
wiley +1 more source
Deinococcus radiodurans‐derived extracellular vesicles (R1‐EVs) provide radioprotection against total‐body irradiation‐induced acute radiation syndrome in mice. R1‐EVs mitigate oxidative damage by scavenging free radicals, promoting intestinal repair, enhancing hematopoietic function, and modulating immune responses. This study highlights the potential
Jeong Moo Han+7 more
wiley +1 more source
Glepaglutide (GL), a GLP‐2 analog with an extended half‐life (50 h), is currently undergoing clinical trials for patients with short bowel syndrome. GL requires subcutaneous injection, which poses challenges for potential patient compliance. To address this challenge, we loaded GL into a rectal foam formulation using CO2 as a permeation enhancer to ...
Wunan Zhang+9 more
wiley +1 more source
Rod‐shaped particles outperform spherical particles of the same volume in preventing neutrophil infiltration to inflamed areas, both in vitro and in vivo. This therapeutic effectiveness is attributed to better cell targeting and decreased cell motility, resulting from the geometry‐driven phagocytosis and inhibited actin polymerization.
M. Valentina Guevara+7 more
wiley +1 more source
AIMSPec‐LoC is a novel lab‐on‐a‐chip platform integrating size‐based extracellular vesicle (EVs) separation with label‐free Raman spectroscopy and AI‐powered classification via SKiNET. This high‐throughput, portable system enables real‐time, multiplexed molecular fingerprinting of EVs from biofluids, offering transformative potential for early, non ...
Emma Buchan+3 more
wiley +1 more source
Computational Simulations of Metal–Organic Frameworks to Enhance Adsorption Applications
This review highlights the significance of molecular simulations in expanding the understanding of metal–organic frameworks (MOFs) and improving their gas adsorption applications. The historical development and implementation of molecular simulations in the MOF field are given, high‐throughput computational screening studies used to unlock the ...
Hilal Daglar+3 more
wiley +1 more source
Enhancing Ultrasound Power Transfer: Efficiency, Acoustics, and Future Directions
Implantable devices significantly enhance healthcare but are limited by battery life. Ultrasound power transfer technology offers a promising solution for sustainable operation. This review addresses gaps in current research, particularly in sound field analysis and energy efficiency optimization.
Yi Zheng+6 more
wiley +1 more source
Synthetic Aspects and Characterization Needs in MOF Chemistry – from Discovery to Applications
Overcoming the challenges of phase discovery, synthesis optimization and scale‐up, characterization, and computational studies is essential to accelerate the large‐scale application of MOFs. Life‐cycle analyses and techno‐economic analyses need to be performed to realistically assess their potential for industrial relevance.
Bastian Achenbach+4 more
wiley +1 more source
A Bio‐Inspired Perspective on Materials Sustainability
This perspective discusses natural materials as inspiration for sustainable engineering designs and the processing of materials. First, circularity, longevity, parsimony, and activity are presented as essential material paradigms. The perspective then uses many examples of natural and technical materials to introduce principles such as oligo ...
Wolfgang Wagermaier+2 more
wiley +1 more source