Results 291 to 300 of about 3,415,912 (400)

Scalable Thermal Engineering via Femtosecond Laser‐Direct‐Written Phononic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that femtosecond laser‐induced periodic surface structures (fs‐LIPSS) can function as phononic metasurfaces, reducing thermal conductivity below the plain thin‐film limit. Phonon Monte Carlo analysis reveals that the periodic structures restrict phonon mean free paths.
Hiroki Hamma   +4 more
wiley   +1 more source

Modulating Interfacial Potential Gradients in Metal−Carbon Catalysts via Phase‐Engineering for Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim   +13 more
wiley   +1 more source

Organometallic Precursor‐Induced Gradient Architecture on Multilayer Nanoporous Graphene Membranes for Precise Organic Solvent Nanofiltration

open access: yesAdvanced Functional Materials, EarlyView.
Alumina growth narrows surface pores and seals non‐selective defects, enhancing selectivity while preserving the nanoporous graphene architecture. Additionally, the deposition enables gradient‐controlled structural modification, with intergrown alumina acting as a physical cross‐linker that stabilizes the laminar structure.
Junhyeok Kang   +8 more
wiley   +1 more source

Pixelation‐Free, Monolithic Iontronic Pressure Sensors Enabling Large‐Area Simultaneous Pressure and Position Recognition via Machine Learning

open access: yesAdvanced Functional Materials, EarlyView.
A pixelation‐free, monolithic iontronic pressure sensor enables simultaneous pressure and position sensing over large areas. AC‐driven ion release generates spatially varying impedance pathways depending on the pressure. Machine learning algorithms effectively decouple overlapping pressure–position signals from the multichannel outputs, achieving high ...
Juhui Kim   +10 more
wiley   +1 more source

Overcoming Debye Length Limitations in Electrolyte‐Gated Transistor Biosensors Using Nanoscale‐Grooved Oxide Semiconductors Fabricated by Thermal Nanoimprint Lithography

open access: yesAdvanced Functional Materials, EarlyView.
Nanoscale‐grooved indium gallium oxide (IGO) semiconductors, patterned via thermal nanoimprint lithography (NIL) using CD/DVD templates, are integrated into electrolyte‐gated transistor biosensors to overcome Debye length limitations. Precisely engineered concave–convex nanostructures modulate local electrostatic potentials, extend the effective Debye ...
Jong Yu Song   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy