Results 161 to 170 of about 2,424,546 (289)

Complicaciones de la radioterapia cervicofacial. Osteorradionecrosis. [PDF]

open access: yes, 1998
El tratamiento de los tumores de la cavidad bucal incluye en la mayoría de los casos la combinación de cirugía y radioterapia. Dentro de las secuelas de la radioterapia de la región cervicofacial podemos distinguir efectos agudos como radiodermitis ...
Alaejos Algarra, C.   +3 more
core  

AXL Promotes Ischemic Myelin Repair Through Alleviating Myelin Debris Deposition and Lipid Droplets Accumulation

open access: yesAdvanced Science, EarlyView.
Microglial AXL drives white matter repair after stroke by orchestrating the cleanup of myelin debris. Mechanistically, AXL signals through EGR1 to boost Smpd1 transcription, regulating sphingolipid metabolism and preventing lipid droplet toxicity. Restoring the pathway with ASM therapy mitigates damage, positioning AXL as a key node for therapeutic ...
Junqiu Jia   +13 more
wiley   +1 more source

Dissolution Study of Biodegradable Magnesium Silicide Thin Films for Transient Electronic Applications

open access: yesAdvanced Science, EarlyView.
Magnesium silicide (Mg2Si) is introduced as a narrow‐bandgap, biodegradable semiconductor for transient electronics. RF‐sputtered and annealed Mg2Si thin films show high intrinsic electrical conductivity and low thermal conductivity. The polycrystalline material undergoes hydrolysis in aquatic and composting environments with minimal cytotoxicity ...
Ji‐Woo Gu   +17 more
wiley   +1 more source

Arginine Methylation Antagonizes TEAD3‐Mediated Repression to Promote Osteogenic Differentiation by Disrupting RUNX2‐Sequestrating Condensates

open access: yesAdvanced Science, EarlyView.
In the unmethylated state, TEAD forms stable, repressive condensates that sequester the osteogenic master regulator RUNX2. Arginine methylation of TEAD at R55 acts as a molecular brake, dissolving these condensates to release RUNX2 and activate the osteogenic program.
Lei Cao   +6 more
wiley   +1 more source

Macrophage–Derived Ferritin Exacerbates Silica‐Induced Pulmonary Fibrosis via PIK3R2‐Mediated Fibroblast Differentiation

open access: yesAdvanced Science, EarlyView.
This study identifies ferritin as a pivotal mediator of silica‐induced pulmonary fibrosis. Macrophage‐derived ferritin drives fibroblast‐to‐myofibroblast differentiation via the PIK3R2/SMAD pathway, while ferritin knockdown alleviates fibrosis. These findings define ferritin as both a biomarker and pathogenic driver, highlighting ferritin‐PIK3R2 ...
Liqun Wang   +14 more
wiley   +1 more source

Identification of a Force‐Induced Sox9+Acan+ Transitional Subpopulation Linked to FGF2–FGFR2–ERK Signaling in Orthodontic Bone Remodeling

open access: yesAdvanced Science, EarlyView.
Mechanical loading induces a previously unrecognized Sox9+Acan+ transitional mesenchymal cell population in the periodontal ligament that promotes osteoclastogenesis via the FGF2–FGFR2–ERK axis. Targeting this mechanoresponsive stromal population using a localized GelMA@siRNA delivery strategy attenuates pathological osteoclast overactivation and root ...
Miao Tan   +9 more
wiley   +1 more source

Cortical Somatostatin Neurons Regulate Seizure Susceptibility via MINAR1/Gαs–cAMP Signaling

open access: yesAdvanced Science, EarlyView.
Our study identifies MINAR1 as a novel regulator of cortical interneuron excitability and seizure susceptibility. MINAR1 is preferentially expressed in SST+ interneurons. Genetic ablation of MINAR1 leads to seizure hypersensitivity, reduced SST+ neuron excitability, and impaired Gαs–cAMP signaling, disrupting the E/I balance.
Wei‐Tang Liu   +20 more
wiley   +1 more source

Investigation on Laser Dental Implant Decontamination

open access: yes, 2008
A. Yousif   +6 more
semanticscholar   +1 more source

Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications.

open access: yesJournal of The Mechanical Behavior of Biomedical Materials, 2019
Z. Wally   +5 more
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy