Results 261 to 270 of about 11,521,408 (419)

Targeting the AKT/mTOR pathway attenuates the metastatic potential of colorectal carcinoma circulating tumor cells in a murine xenotransplantation model

open access: yesMolecular Oncology, EarlyView.
Dual targeting of AKT and mTOR using MK2206 and RAD001 reduces tumor burden in an intracardiac colon cancer circulating tumor cell xenotransplantation model. Analysis of AKT isoform‐specific knockdowns in CTC‐MCC‐41 reveals differentially regulated proteins and phospho‐proteins by liquid chromatography coupled mass spectrometry. Circulating tumor cells
Daniel J. Smit   +19 more
wiley   +1 more source

Determining the effects of films with suicidal content: A laboratory experiment

open access: yesBritish Journal of Psychiatry, 2015
B. Till   +3 more
semanticscholar   +1 more source

MET and NF2 alterations confer primary and early resistance to first‐line alectinib treatment in ALK‐positive non‐small‐cell lung cancer

open access: yesMolecular Oncology, EarlyView.
Alectinib resistance in ALK+ NSCLC depends on treatment sequence and EML4‐ALK variants. Variant 1 exhibited off‐target resistance after first‐line treatment, while variant 3 and later lines favored on‐target mutations. Early resistance involved off‐target alterations, like MET and NF2, while on‐target mutations emerged with prolonged therapy.
Jie Hu   +11 more
wiley   +1 more source

Practical challenges in data‐driven interpolation: Dealing with noise, enforcing stability, and computing realizations

open access: yesInternational Journal of Adaptive Control and Signal Processing, EarlyView., 2023
Summary In this contribution, we propose a detailed study of interpolation‐based data‐driven methods that are of relevance in the model reduction and also in the systems and control communities. The data are given by samples of the transfer function of the underlying (unknown) model, that is, we analyze frequency‐response data.
Quirin Aumann, Ion Victor Gosea
wiley   +1 more source

Aberrant expression of nuclear prothymosin α contributes to epithelial‐mesenchymal transition in lung cancer

open access: yesMolecular Oncology, EarlyView.
Nuclear prothymosin α inhibits epithelial‐mesenchymal transition (EMT) in lung cancer by increasing Smad7 acetylation and competing with Smad2 for binding to SNAI1, TWIST1, and ZEB1 promoters. In early‐stage cancer, ProT suppresses TGF‐β‐induced EMT, while its loss in the nucleus in late‐stage cancer leads to enhanced EMT and poor prognosis.
Liyun Chen   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy