Results 181 to 190 of about 312,069 (310)
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Legal, ethical, and policy challenges of artificial intelligence translation tools in healthcare. [PDF]
van Kolfschooten H +5 more
europepmc +1 more source
Language Policy and its Relation to Identity in the Arab World
يحيى بن محمد بن علي المهدي
openalex +2 more sources
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
GrantCheck-an AI Solution for Guiding Grant Language to New Policy Requirements: Development Study. [PDF]
Shi Q +10 more
europepmc +1 more source
Advanced Experiment Design Strategies for Drug Development
Wang et al. analyze 592 drug development studies published between 2020 and 2024 that applied design of experiments methodologies. The review surveys both classical and emerging approaches—including Bayesian optimization and active learning—and identifies a critical gap between advanced experimental strategies and their practical adoption in ...
Fanjin Wang +3 more
wiley +1 more source
Language Barriers in the Federal Republic of Somalia's Healthcare: Addressing Inclusivity for Minority Dialects. [PDF]
Dirie NI, Ahmed MM.
europepmc +1 more source
Artificial Intelligence (AI) and Agribusiness: From Automation to Augmentation in a Global Context
Agribusiness, EarlyView.
Alexis H. Villacis
wiley +1 more source
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee +3 more
wiley +1 more source

