Results 291 to 300 of about 1,096,670 (333)
Eigenvalue Estimates on Weighted Manifolds. [PDF]
Branding V, Habib G.
europepmc +1 more source
A statistical estimation of fractional order cryptosporidiosis epidemic model. [PDF]
Ahmed N+10 more
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Kompendium der reellen Analysis, 2019
In diesem Kapitel betrachten wir Differentialoperatoren, die in engem Zusammenhang mit der orthogonalen Gruppe der Raumdrehungen im \( {\mathbb{R}}^{n} \) stehen. Zum einen ist dies der sogenannte Laplace Operator \( \Delta = \sum\limits_{i = 1}^{n} {\partial_{i}^{2} } \) , gegeben durch die Summe der zweiten Ableitungen, und zum anderen der Euler ...
R. Weissauer
semanticscholar +3 more sources
In diesem Kapitel betrachten wir Differentialoperatoren, die in engem Zusammenhang mit der orthogonalen Gruppe der Raumdrehungen im \( {\mathbb{R}}^{n} \) stehen. Zum einen ist dies der sogenannte Laplace Operator \( \Delta = \sum\limits_{i = 1}^{n} {\partial_{i}^{2} } \) , gegeben durch die Summe der zweiten Ableitungen, und zum anderen der Euler ...
R. Weissauer
semanticscholar +3 more sources
A nonholonomic Laplace operator [PDF]
See the review in Zbl 0779.53029.
Anatoly Vershik, V. Ya. Gershkovich
openaire +2 more sources
Mathematical methods in the applied sciences, 2020
The paper deals with the following Kirchhoff‐type problem M∬ℝ2N1p(x,y)|v(x)−v(y)|p(x,y)|x−y|N+p(x,y)s(x,y)dxdy(−Δ)p(·)s(·)v(x)=μg(x,v)+|v|r(x)−2vinΩ,v=0inℝN\Ω, where M models a Kirchhoff coefficient, (−Δ)p(·)s(·) is a variable s(·)‐order p(·)‐fractional ...
J. Zuo, Tianqing An, A. Fiscella
semanticscholar +1 more source
The paper deals with the following Kirchhoff‐type problem M∬ℝ2N1p(x,y)|v(x)−v(y)|p(x,y)|x−y|N+p(x,y)s(x,y)dxdy(−Δ)p(·)s(·)v(x)=μg(x,v)+|v|r(x)−2vinΩ,v=0inℝN\Ω, where M models a Kirchhoff coefficient, (−Δ)p(·)s(·) is a variable s(·)‐order p(·)‐fractional ...
J. Zuo, Tianqing An, A. Fiscella
semanticscholar +1 more source
On The Attainable Eigenvalues of the Laplace Operator
SIAM Journal on Mathematical Analysis, 1999Summary: We consider the subset \(E\) of \(\mathbb{R}^2\) of all points whose first and second components, respectively, coincide with the first and second eigenvalues of the Laplace operator \(-\Delta\) with zero boundary conditions on domains of \(\mathbb{R}^N\) with prescribed measure. We show that the set \(E\) is closed in \(\mathbb{R}^2\).
D. Bucur+2 more
openaire +3 more sources
Mathematical methods in the applied sciences, 2019
The purpose of the current study is to investigate IBVP for spatial‐time fractional differential equation with Hadamard fractional derivative and fractional Laplace operator(−Δ)β. A new Hadamard fractional extremum principle is established.
Guotao Wang, Xueyan Ren, D. Baleanu
semanticscholar +1 more source
The purpose of the current study is to investigate IBVP for spatial‐time fractional differential equation with Hadamard fractional derivative and fractional Laplace operator(−Δ)β. A new Hadamard fractional extremum principle is established.
Guotao Wang, Xueyan Ren, D. Baleanu
semanticscholar +1 more source