Results 281 to 290 of about 26,542 (324)

Identification and Characterization of an In Silico Designed Membrane‐Active Peptide with Antiviral Properties

open access: yesAdvanced Science, EarlyView.
An evolutionary molecular dynamics platform is used to design P1.6, a membrane‐active peptide that senses lipid packing defects in viral envelopes. P1.6 adopts a stabilized α‐helical structure upon membrane contact, disrupts virus‐like liposomes, and damages HIV‐1 particles.
Pascal von Maltitz   +10 more
wiley   +1 more source

Ionic–Bionic Interfaces: Advancing Iontronic Strategies for Bioelectronic Sensing and Therapy

open access: yesAdvanced Science, EarlyView.
Ionic–bionic interfaces for bioelectronics leverage ions as multifunctional mediators that combine mechanical compliance, ionic and electronic functionalities, and therapeutic effects. These systems offer real‐time biosignal transduction, effective wound dressing, responsive drug delivery, and seamless interaction between soft tissues and electronic ...
Yun Goo Ro   +6 more
wiley   +1 more source

OPTRACE: Optical Imaging–Guided Transplantation and Tracking of Cells in the Mouse Brain

open access: yesAdvanced Science, EarlyView.
OPTRACE establishes an optical, two‐step platform for intracerebral cell therapy. Transparent glass pipettes enable real‐time, image‐guided delivery, while multiplex genetic labeling with two‐photon and bioluminescence readouts supports longitudinal single‐cell tracking and host–graft dynamics.
Jinghui Wang   +10 more
wiley   +1 more source

Material‐Induced Nuclear Deformation Controls Chromatin Architecture in Adipose Stem Cells

open access: yesAdvanced Science, EarlyView.
Tuning cell and cytoskeleton mechanics modulated nuclear shape and heterochromatin organization in ASCs. Distinct cytoskeletal architectures induced nuclear morphologies from oblate to prolate ellipsoids. Large elongated cells with a structured actin cap exhibited high nuclear strain, driving nuclear envelope deformation and heterochromatin ...
Carlo F. Natale   +6 more
wiley   +1 more source

Depth resolution in multifocus laser speckle contrast imaging

Optics Letters, 2021
Laser speckle contrast imaging (LSCI) can be used to evaluate blood flow based on spatial or temporal speckle statistics, but its accuracy is undermined by out-of-focus image blur. In this Letter, we show how the fraction of dynamic versus static light scattering is dependent on focus, and describe a deconvolution strategy to correct for out-of-focus ...
Shuqi Zheng   +4 more
openaire   +2 more sources

Efficient Processing of Laser Speckle Contrast Images

IEEE Transactions on Medical Imaging, 2008
Though laser speckle contrast imaging enables the measurement of scattering particle dynamics with high temporal resolution, the subsequent processing has previously been much slower. In prior studies, generating a laser speckle contrast image required about 1 s to process a raw image potentially collected in 10 ms or less.
W James, Tom   +2 more
openaire   +2 more sources

Imaging microvascular flow characteristics using laser speckle contrast imaging

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010
Laser speckle contrast imaging (LSCI) has classically been used to image regional blood flow changes in animal models. In this paper, we demonstrate the use of LSCI for elucidating blood flow characteristics in individual microvessels with diameters as small as 24µm. We extracted profiles of speckle contrast values within individual vessels, both along
Abhishek, Rege   +3 more
openaire   +2 more sources

Calibration in laser speckle contrast imaging

Biomedical Optics, 2006
We provided a novel calibration procedure in laser speckle contrast imaging that can efficiently compensate systematic errors in speckle contrast caused by speckle/pixel size mismatch and static scatters in the tissue.
Shuai Yuan   +2 more
openaire   +1 more source

Home - About - Disclaimer - Privacy