Results 131 to 140 of about 1,453,006 (366)
Regularization methods for Nuclear Lattice Effective Field Theory
We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings at lowest order in the pionless as well as in the pionful theory.
Nico Klein +3 more
doaj +1 more source
Violation of Finite-Size Scaling in Three Dimensions
We reexamine the range of validity of finite-size scaling in the $\phi^4$ lattice model and the $\phi^4$ field theory below four dimensions. We show that general renormalization-group arguments based on the renormalizability of the $\phi^4$ theory do not
Chen, X. S., Dohm, V.
core +2 more sources
This study reveals that higher shell S coordination can effectively modulate the spin state of FeN4 site via long‐range electronic interactions, giving rise to the oriented generation of singlet oxygen from peroxymonosulfate activation. Abstract Precise manipulation of coordination structure of single‐atom sites and establishment of schematic ...
Liang Zhang +8 more
wiley +1 more source
Proton–proton fusion in lattice effective field theory
The proton–proton fusion rate is calculated at low energy in a lattice effective field theory (EFT) formulation. The strong and the Coulomb interactions are treated non-perturbatively at leading order in the EFT.
Gautam Rupak, Pranaam Ravi
doaj +1 more source
A novel phthalocyanine (PC)‐based metal–organic framework (MOFs) is synthesized using ditopic PC linkers obtained through regioselective statistical condensation. The resulting MOF exhibits significant improvements in electronic absorption, thereby enhancing the material's performance in light harvesting and energy conversion.
Lukas S. Langer +12 more
wiley +1 more source
A lack of standard approaches for testing and reporting the performance of metal halide perovskites and organic semiconductor radiation detectors has resulted in inconsistent interpretation of performance parameters, impeding progress in the field. This Perspective recommends key metrics and experimental details, which are suggested for reporting in ...
Jessie A. Posar +8 more
wiley +1 more source
We study a three-dimensional chiral second-order topological insulator (SOTI) subject to a magnetic field. Via its gauge field, the applied magnetic field influences the electronic motion on the lattice, and via the Zeeman effect, the field influences ...
B. A. Levitan, T. Pereg-Barnea
doaj +1 more source
Optical Control of the Thermal Conductivity in BaTiO3
Light‐driven manipulation of thermal conductivity in archetypal ferroelectric, BaTiO3, offers a novel and effective approach for the dynamical control of the heat flux, with potential applications in thermal management and phonon‐based logic. Abstract Achieving dynamic control over thermal conductivity remains a formidable challenge in condensed matter
Claudio Cazorla +4 more
wiley +1 more source
The fabrication of patterned transition metal dichalcogenide (TMD)/graphene heterostructures via direct laser writing reveals new interface chemistry and enables efficient, customizable assembly. Selective laser irradiation of functionalized TMD/graphene triggers localized reactions, forming chemically modified interfaces.
Xin Chen +12 more
wiley +1 more source
This study uncovers a new switching mechanism in HfO2 and ZrO2, where the absence of a non‐polar layer along the a‐direction induces interaction between polar layers. Consequently, the switching barriers for growth are lower than those for nucleation in this direction, leading to a size‐dependent coercive field that matches experimental observations ...
Kun Hee Ye +6 more
wiley +1 more source

