Results 261 to 270 of about 4,081,684 (342)

Precursor Mineral Phases of Forming Mollusk Shell Nacre: A Study of Hydrated Samples

open access: yesAdvanced Functional Materials, EarlyView.
Mineral, organic phase, and water are the essential components in mollusk shell nacre formation. Their interplay is not well understood, because the hydrated material is difficult to observe at high resolution, under close to native conditions. Forming nacre is studied using environmental and cryo‐electron microscopy and hydrated ACC phases, together ...
Anna Kozell   +4 more
wiley   +1 more source

Thickness‐Dependent Skyrmion Evolution in Fe3GeTe2 During Magnetization Reversal

open access: yesAdvanced Functional Materials, EarlyView.
Thickness‐ and field‐dependent magnetic domain behavior in 2D van der Waals Fe3GeTe2 is studied using Lorentz TEM and micromagnetic simulations. A patch‐like domain phase evolves from skyrmions during magnetization reversal, and step edges between thickness regions act as pinning sites.
Jennifer Garland   +9 more
wiley   +1 more source

Multiple Twinning in Nacre and Aragonite

open access: yesAdvanced Functional Materials, EarlyView.
Electron backscatter diffraction map of a cluster of geologic aragonite, exhibiting single, double, and triple twins. The whole cluster is approximately 2 cm wide. Colors indicate crystal orientations, so that pixels where the a‐, b‐, and c‐axis is perpendicular to the image plane are green, red, and blue, respectively.
Connor A. Schmidt   +7 more
wiley   +1 more source

Bimetallic Nanoreactor Activates cGAS‐STING Pathway via mtDNA Release for Cancer Metalloimmunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
A bimetallic Mn–Ca nanoreactor (MCC) is developed as a non‐nucleotide STING nanoagonist for cancer metalloimmunotherapy. MCC induces Ca2+ overload and hydroxyl radical generation, resulting in mitochondrial damage and mtDNA release. The released mtDNA cooperates with Mn2+ to robustly activate cGAS–STING signaling.
Xin Wang Mo   +7 more
wiley   +1 more source

A Smart Magnetically Actuated Flip‐Disc Programmable Metasurface with Ultralow Power Consumption for Real‐Time Channel Control

open access: yesAdvanced Functional Materials, EarlyView.
The study proposes a 1‐bit programmable metasurface based on flip‐disc display, named flip‐disc metasurface (FD‐MTS). This new design enables ultralow energy consumption while maintaining coding patterns. It also exhibits high scalability and multifunctional flexibility.
Jiang Han Bao   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy