Results 201 to 210 of about 314,053 (305)
This study establishes a materials‐driven framework for entropy generation within standard CMOS technology. By electrically rebalancing gate‐oxide traps and Si‐channel defects in foundry‐fabricated FDSOI transistors, the work realizes in‐materia control of temporal correlation – achieving task adaptive entropy optimization for reinforcement learning ...
Been Kwak +14 more
wiley +1 more source
An epi‐intraneural interface is developed through in silico optimization and a novel tridimensional microfabrication pipeline. The device integrates penetrating and epineural contacts on a flexible substrate. Mechanical, electrochemical, and in vivo testing in rat and pig reveal robust implantation, low‐threshold activation, and site‐dependent ...
Federico Ciotti +14 more
wiley +1 more source
Sentence Classification Using Transfer Learning with BERT
Abhishek Verma, V Nallarasan
openalex +2 more sources
In this study, the preparation techniques for silver‐based gas diffusion electrodes used for the electrochemical reduction of carbon dioxide (eCO2R) are systematically reviewed and compared with respect to their scalability. In addition, physics‐based and data‐driven modeling approaches are discussed, and a perspective is given on how modeling can aid ...
Simon Emken +6 more
wiley +1 more source
Fibrous benzenetrispeptide (BTP) hydrogels, fabricated via strain‐promoted azide‐alkyne cycloaddition (SPAAC) crosslinking, form robust, bioinert networks. These hydrogels can support 3D cell culture, where cell viability and colony growth depend on the fiber content.
Ceren C. Pihlamagi +5 more
wiley +1 more source
DeepDetectCorn: Transfer Learning-Powered Deep Learning for Corn Crop Disease Recognition
Nitesh Sureja +5 more
openalex +2 more sources
Modular diffractive deep neural network metasurfaces encode and reconstruct holograms across layer combinations and wavelengths, enabling secure, multifunctional operation. Each layer acts independently yet composes jointly, yielding up to m(2N −1) channels for m wavelengths and N layers.
Cherry Park +4 more
wiley +1 more source
A machine learning and simulation‐guided strategy is demonstrated for gentle, non‐sonication dispersion of carbon nanotubes, preserving structural integrity and performance. This approach enables transparent conductive films with low sheet resistance, high transmittance, and sub‐20 µm printability.
Ying Zhou +7 more
wiley +1 more source

