Results 301 to 310 of about 1,734,839 (338)
Some of the next articles are maybe not open access.
Rényi divergence on learning with errors
Science China Information Sciences, 2020Many lattice-based schemes are built from the hardness of the learning with errors problem, which naturally comes in two flavors: the decision LWE and search LWE. In this paper, we investigate the decision LWE and search LWE by Renyi divergence respectively and obtain the following results: For decision LWE, we apply RD on LWE variants with different ...
Yang Tao, Han Wang, Rui Zhang
openaire +1 more source
Cryptography based on Learning with Errors
2023This work navigates the evolving world of post-quantum cryptography, particularly focusing on lattice-based cryptographic constructions. Starting with a thorough exploration of fundamental lattice concepts, the study progresses to delve into well-known hard lattice problems and the algorithms attempting to solve them.
openaire +1 more source
Error Analysis on Hérmite Learning with Gradient Data
Chinese Annals of Mathematics, Series B, 2018zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Sheng, Baohuai +2 more
openaire +1 more source
Module Learning with Errors with Truncated Matrices
The Module Learning with Errors (MLWE) problem is one of the most commonly used hardness assumption in lattice-based cryptography. In its standard version, a matrix A is sampled uniformly at random over a quotient ring Rq, as well as noisy linear equations in the form of As+emodq, where s is the secret, sampled uniformly at random over Rq, and e is theBoudgoust, Katharina, Keller, Hannah
openaire +3 more sources
Collusion Resistant Traitor Tracing from Learning with Errors
SIAM Journal on Computing, 2018zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Goyal, Rishab +2 more
openaire +1 more source
Learning with Errors over Rings
2010The “learning with errors” (LWE) problem is to distinguish random linear equations, which have been perturbed by a small amount of noise, from truly uniform ones. The problem has been shown to be as hard as worst-case lattice problems, and in recent years it has served as the foundation for a plethora of cryptographic applications.
openaire +1 more source
Compact Ring Signatures from Learning with Errors
2021Ring signatures allow a user to sign a message on behalf of a “ring” of signers, while hiding the true identity of the signer. As the degree of anonymity guaranteed by a ring signature is directly proportional to the size of the ring, an important goal in cryptography is to study constructions that minimize the size of the signature as a function of ...
Chatterjee R. +7 more
openaire +2 more sources
Learning with Errors in the Exponent
2016The Snowden revelations have shown that intelligence agencies have been successful in undermining cryptography and put in question the exact security provided by the underlying intractability problem. We introduce a new class of intractability problems, called Learning with Errors in the Exponent (LWEE).
Özgür Dagdelen +2 more
openaire +1 more source
Error-Driven Learning with Bracketing Constraints
2006A chunking algorithm with a Markov model is extended to accept bracketing constraints. The extended algorithm is implemented by modifying a state-of-the-art Japanese dependency parser. Then the effect of bracketing constraints in preventing parsing errors is evaluated. A method for improving the parser’s accuracy is proposed.
Takashi Miyata, Kôiti Hasida
openaire +1 more source
Active learning with error-correcting output codes
Neurocomputing, 2019Abstract In many real-world classification problems, while there is a large amount of unlabeled data, labeled data is usually hard to acquire. One way to solve these problems is active learning. It aims to select the most valuable instances for labeling and construct a superior classifier.
Shilin Gu +3 more
openaire +1 more source

