Results 31 to 40 of about 82,244 (222)
Nonlinear elliptic systems with variable exponents and measure data
In this paper we prove existence results for distributional solutions of nonlinear elliptic systems with a measure data. The functional setting involves Lebesgue-Sobolev spaces as well as weak Lebesgue (Marcinkiewicz) spaces with variable exponents W01,p(
Bendahmane Mostafa, Mokhtari Fares
doaj +1 more source
Exact constant in Sobolev's and Sobolev's trace inequalities for Grand Lebesgue Spaces [PDF]
In this article we generalize the classical Sobolev's and Sobolev's trace inequalities on the Grand Lebesgue Spaces instead the classical Lebesgue Spaces. We will distinguish the classical Sobolev's inequality and the so-called trace Sobolev's inequality.
Ostrovsky, E., Rogover, E., Sirota, L.
core
Uniqueness in weighted Lebesgue spaces for a class of fractional parabolic and elliptic equations
We investigate uniqueness, in suitable weighted Lebesgue spaces, of solutions to a class of fractional parabolic and elliptic ...
Punzo, Fabio, Valdinoci, Enrico
core +1 more source
Abstract This paper is devoted to the approximation of two‐ and three‐dimensional Dirac operators HV∼δΣ$H_{\widetilde{V} \delta _\Sigma }$ with combinations of electrostatic and Lorentz scalar δ$\delta$‐shell interactions in the norm resolvent sense. Relying on results from Behrndt, Holzmann, and Stelzer‐Landauer [Math. Nachr.
Jussi Behrndt +2 more
wiley +1 more source
We consider a variant \(E_{n,k}(N;r,r;p,p)\) of the four-parameter Stechkin problem \(E_{n,k}(N;r,s;p,q)\) on the best approximation of differentiation operators of order \(k\) on the class of \(n\) times differentiable functions ...
Vitalii V. Arestov
doaj +1 more source
Generalized quasi‐geostrophic equation in critical Lorentz–Besov spaces, based on maximal regularity
Abstract We consider the quasi‐geostrophic equation with its principal part (−Δ)α${(-\mathrm{\Delta})^{\alpha}}$ for α>1/2$\alpha >1/2$ in Rn$\mathbb {R}^n$ with n≥2$n \ge 2$. We show that for every initial data θ0∈Ḃr,q1−2α+nr$\theta _0 \in \dot{B}^{1-2\alpha + \frac{n}{r}}_{r, q}$ with 1
Hideo Kozono +2 more
wiley +1 more source
The main purpose of this paper is to prove that the boundedness of the commutator Mκ,b∗$\mathcal{M}_{\kappa,b}^{*} $ generated by the Littlewood-Paley operator Mκ∗$\mathcal{M}_{\kappa}^{*} $ and RBMO (μ) function on non-homogeneous metric measure ...
Lu Guanghui, Tao Shuangping
doaj +1 more source
Duality for Evolutionary Equations With Applications to Null Controllability
ABSTRACT We study evolutionary equations in exponentially weighted L2$$ {\mathrm{L}}^2 $$‐spaces as introduced by Picard in 2009. First, for a given evolutionary equation, we explicitly describe the ν$$ \nu $$‐adjoint system, which turns out to describe a system backwards in time. We prove well‐posedness for the ν$$ \nu $$‐adjoint system. We then apply
Andreas Buchinger, Christian Seifert
wiley +1 more source
The authors establish the two-weight norm inequalities for the one-sided Hardy-Littlewood maximal operators in variable Lebesgue spaces. As application, they obtain the two-weight norm inequalities of variable Riemann-Liouville operator and variable Weyl
Caiyin Niu, Zongguang Liu, Panwang Wang
doaj +1 more source
On the Mean‐Field Limit of Consensus‐Based Methods
ABSTRACT Consensus‐based optimization (CBO) employs a swarm of particles evolving as a system of stochastic differential equations (SDEs). Recently, it has been adapted to yield a derivative free sampling method referred to as consensus‐based sampling (CBS). In this paper, we investigate the “mean‐field limit” of a class of consensus methods, including
Marvin Koß, Simon Weissmann, Jakob Zech
wiley +1 more source

