Results 41 to 50 of about 245 (151)
Iitaka fibrations and integral points: A family of arbitrarily polarized spherical threefolds
Abstract Studying Manin's program for a family of spherical log Fano threefolds, we determine the asymptotic number of integral points whose height associated with an arbitrary ample line bundle is bounded. This confirms a recent conjecture by Santens and sheds new light on the logarithmic analog of Iitaka fibrations, which have not yet been adequately
Ulrich Derenthal, Florian Wilsch
wiley +1 more source
Mirror symmetry, Laurent inversion, and the classification of Q$\mathbb {Q}$‐Fano threefolds
Abstract We describe recent progress in a program to understand the classification of three‐dimensional Fano varieties with Q$\mathbb {Q}$‐factorial terminal singularities using mirror symmetry. As part of this we give an improved and more conceptual understanding of Laurent inversion, a technique that sometimes allows one to construct a Fano variety X$
Tom Coates +2 more
wiley +1 more source
The contact cut graph and a Weinstein L$\mathcal {L}$‐invariant
Abstract We define and study the contact cut graph which is an analogue of Hatcher and Thurston's cut graph for contact geometry, inspired by contact Heegaard splittings (Giroux, Proceedings of the International Congress of Mathematicians, Beijing, 2002; Torisu, Internat. Math. Res. Notices (2000), 441–454).
Nickolas A. Castro +5 more
wiley +1 more source
Floer theory for the variation operator of an isolated singularity
Abstract The variation operator in singularity theory maps relative homology cycles to compact cycles in the Milnor fiber using the monodromy. We construct its symplectic analog for an isolated singularity. We define the monodromy Lagrangian Floer cohomology, which provides categorifications of the standard theorems on the variation operator and the ...
Hanwool Bae +3 more
wiley +1 more source
Persistence of unknottedness of clean Lagrangian intersections
Abstract Let Q0$Q_0$ and Q1$Q_1$ be two Lagrangian spheres in a six‐dimensional symplectic manifold. Assume that Q0$Q_0$ and Q1$Q_1$ intersect cleanly along a circle that is unknotted in both Q0$Q_0$ and Q1$Q_1$. We prove that there is no nearby Hamiltonian isotopy of Q0$Q_0$ and Q1$Q_1$ to a pair of Lagrangian spheres meeting cleanly along a circle ...
Johan Asplund, Yin Li
wiley +1 more source
Equivariant Hilbert and Ehrhart series under translative group actions
Abstract We study representations of finite groups on Stanley–Reisner rings of simplicial complexes and on lattice points in lattice polytopes. The framework of translative group actions allows us to use the theory of proper colorings of simplicial complexes without requiring an explicit coloring to be given.
Alessio D'Alì, Emanuele Delucchi
wiley +1 more source
The weak Lefschetz property for artinian Gorenstein algebras
Abstract It is an extremely elusive problem to determine which standard artinian graded K$K$‐algebras satisfy the weak Lefschetz property (WLP). Codimension 2 artinian Gorenstein graded K$K$‐algebras have the WLP and it is open to what extent such result might work for codimension 3 artinian Gorenstein graded K$K$‐algebras.
Rosa M. Miró‐Roig
wiley +1 more source
General infinitesimal variations of the Hodge structure of ample curves in surfaces
Abstract Given a smooth projective complex curve inside a smooth projective surface, one can ask how its Hodge structure varies when the curve moves inside the surface. In this paper, we develop a general theory to study the infinitesimal version of this question in the case of ample curves.
Víctor González‐Alonso, Sara Torelli
wiley +1 more source
On the stack of 0‐dimensional coherent sheaves: Motivic aspects
Abstract Let X$X$ be a variety. In this survey, we study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack Cohn(X)$\mathcal {C}\hspace{-2.5pt}{o}\hspace{-1.99997pt}{h}^n(X)$ of 0‐dimensional coherent sheaves of length n$n$ on X$X$. To do so, we review the construction of the support map Cohn(X)→Symn(X)$\mathcal {C}\
Barbara Fantechi, Andrea T. Ricolfi
wiley +1 more source
Wall‐crossing for quasimaps to GIT stack bundles
Abstract We define the notion of ε$\epsilon$‐stable quasimaps to a GIT stack bundle, and study the wall‐crossing behavior of the resulting ε$\epsilon$‐quasimap theory as ε$\epsilon$ varies.
Shidhesh Supekar, Hsian‐Hua Tseng
wiley +1 more source

