Results 51 to 60 of about 55,344 (171)
On higher Jacobians, Laplace equations, and Lefschetz properties
Abstract Let A$A$ be a standard graded Artinian K$\mathbb {K}$‐algebra over a field of characteristic zero. We prove that the failure of strong Lefschetz property (SLP) for A$A$ is equivalent to the osculating defect of a certain rational variety.
Charles Almeida +2 more
wiley +1 more source
The multiplicativity of fixed point invariants
We prove two general factorization theorems for fixed-point invariants of fibrations: one for the Lefschetz number and one for the Reidemeister trace. These theorems imply the familiar multiplicativity results for the Lefschetz and Nielsen numbers of a ...
Citterio +10 more
core +1 more source
Theta divisors and permutohedra
Abstract We establish an intriguing relation of the smooth theta divisor Θn$\Theta ^n$ with permutohedron Πn$\Pi ^n$ and the corresponding toric variety XΠn$X_\Pi ^n$. In particular, we show that the generalised Todd genus of the theta divisor Θn$\Theta ^n$ coincides with h$h$‐polynomial of permutohedron Πn$\Pi ^n$ and thus is different from the same ...
V. M. Buchstaber, A. P. Veselov
wiley +1 more source
Equivariant Nielsen invariants for discrete groups
For discrete groups G, we introduce equivariant Nielsen invariants. They are equivariant analogs of the Nielsen number and give lower bounds for the number of fixed point orbits in the G-homotopy class of an equivariant endomorphism f:X->X.
Weber, Julia
core +2 more sources
Dual Proximal Groups Concisely Representing Complex Hosoya Triangles
This paper introduces dual proximal groups (DPGs) that provide concise representation of complex Hosoya triangles (CHTs). An application is given in terms of the DPG representation of collections of Hosoya‐Hilbert circular triangles on modulated motion waveforms in sequences of video frames. MSC2020 Classification: 11B39,54E05,57S25.
Kübra Gül +3 more
wiley +1 more source
Iitaka fibrations and integral points: A family of arbitrarily polarized spherical threefolds
Abstract Studying Manin's program for a family of spherical log Fano threefolds, we determine the asymptotic number of integral points whose height associated with an arbitrary ample line bundle is bounded. This confirms a recent conjecture by Santens and sheds new light on the logarithmic analog of Iitaka fibrations, which have not yet been adequately
Ulrich Derenthal, Florian Wilsch
wiley +1 more source
Microlocal Lefschetz classes of graph trace kernels
In this paper, we define the notion of graph trace kernels as a generalization of trace kernels. We associate a microlocal Lefschetz class with a graph trace kernel and prove that this class is functorial with respect to the composition of kernels.
Ike, Yuichi
core +1 more source
Mirror symmetry, Laurent inversion, and the classification of Q$\mathbb {Q}$‐Fano threefolds
Abstract We describe recent progress in a program to understand the classification of three‐dimensional Fano varieties with Q$\mathbb {Q}$‐factorial terminal singularities using mirror symmetry. As part of this we give an improved and more conceptual understanding of Laurent inversion, a technique that sometimes allows one to construct a Fano variety X$
Tom Coates +2 more
wiley +1 more source
The contact cut graph and a Weinstein L$\mathcal {L}$‐invariant
Abstract We define and study the contact cut graph which is an analogue of Hatcher and Thurston's cut graph for contact geometry, inspired by contact Heegaard splittings (Giroux, Proceedings of the International Congress of Mathematicians, Beijing, 2002; Torisu, Internat. Math. Res. Notices (2000), 441–454).
Nickolas A. Castro +5 more
wiley +1 more source
Geometry of Universal Magnification Invariants
Recent work in gravitational lensing and catastrophe theory has shown that the sum of the signed magnifications of images near folds, cusps and also higher catastrophes is zero.
Griffiths P. +5 more
core +1 more source

