Results 11 to 20 of about 2,309,305 (310)

On the stability of left δ-centralizers on Banach Lie triple systems [PDF]

open access: diamondOperators and Matrices, 2019
In this paper under a condition, we prove that every Jordan left δ -centralizer on a Lie triple system is a left δ -centralizer. Moreover, we use a fixed point method to prove the generalized Hyers-Ulam-Rassias stability associated with the Pexiderized ...
N. Ghobadipour, Ali Reza Sepasian
openalex   +2 more sources

Left Jordan -Centralizer on Completely Prime -Ring

open access: diamondJournal of the College of Basic Education, 2022
دع M  حلقة هذا البحث يقدم مفاهيم اليسار (على التوالي. يمين) - مركزة ، يسار (على التوالي. يمين) الأردن - مركزية ، يسار (على التوالي. يمين) الأردن الثلاثي - مركز الحلقة وكذلك إثبات ذلك كل يسار (على التوالي. يمين) جوردان -مركزية رئيسية حلقة M يسار (على التوالي يمين) -مركز م.تصنيف مادة الرياضيات: 16W25،16A12 ، 16A78.
Salah Mehdi Salih
openaire   +3 more sources

Left centralizers of an $H\sp{\ast} $-algebra [PDF]

open access: bronzeProceedings of the American Mathematical Society, 1974
Gregory F. Bachelis, James W. McCoy
semanticscholar   +3 more sources

A Jordan Higher Reverse Left (resp. right) Centralizer on Prime ï‡-Rings

open access: diamond, 2020
In this paper, we introduce the concepts of higher reverse left (resp.right) centralizer, Jordan higher reverse left (resp. right) centralizer, and Jordan triple higher reverse left (resp. right) centralizer of -rings.
Fawaz Raad Jarullah, Salah Mehdi Salih
openalex   +3 more sources

Jordan left $α$-centralizer on certain algebras [PDF]

open access: green
In this paper, we investigate Jordan left $α$-centralizer on algebras. We show that every Jordan left $α$-centralizer on an algebra with a right identity is a left $α$-centralizer. We also investigate this result for Banach algebras with a bounded approximate identity. Finally, we study Jordan left $α$-centralizer on group algebra $L^1(G)$.
Eisaei, M.   +2 more
openaire   +2 more sources

Left centralizers on rings that are not semiprime

open access: yesRocky Mountain Journal of Mathematics, 2011
In any ring \(R\), an additive \(T\colon R\to R\) is a (left) centralizer on \(R\) if \(T(xy)=T(x)y\) for all \(x,y\in R\), and is a Jordan centralizer when \(T(xy+yx)=T(x)y+T(y)x\). The main result of the paper is that for any Jordan centralizer \(T\) of \(R\), if \(I\) is the \(T\)-invariant ideal of \(R\) generated by \(\{T(xy)-T(x)y\mid x,y\in R\}\)
Hentzel, Irvin, El-Sayiad, M.S.
openaire   +4 more sources

A Characterization of Jordan Left $$^*$$-Centralizers Via Skew Lie and Jordan Products

open access: greenBulletin of the Iranian Mathematical Society, 2022
Adnan Abbasi   +3 more
openalex   +3 more sources

On Left Centralizers of Semiprime Γ-Rings

open access: gold, 2012
Let M be a semiprime G -ring satisfying an assumption   xa yb z = xb ya z for all x, y, z ? M , a, b?G . In this paper, we prove that a mapping T : M ? M is a centralizer if and only if it is a centralizing left centralizer.
Kalyan Kumar Dey, A. C. Paul
openalex   +3 more sources

Home - About - Disclaimer - Privacy