Results 91 to 100 of about 143,042 (278)
The role of electrocatalytic materials for developing post-lithium metal||sulfur batteries
The exploration of post-Lithium (Li) metals, such as Sodium (Na), Potassium (K), Magnesium (Mg), Calcium (Ca), Aluminum (Al), and Zinc (Zn), for electrochemical energy storage has been driven by the limited availability of Li and the higher theoretical ...
Chao Ye +6 more
doaj +1 more source
Design Principles for Self-forming Interfaces Enabling Stable Lithium Metal Anodes
The path toward Li-ion batteries with higher energy-densities will likely involve use of thin lithium metal (Li) anode (
Chiang, Yet-Ming +7 more
core
Design Principles for High-Capacity Mn-Based Cation-Disordered Rocksalt Cathodes [PDF]
Mn-based Li-excess cation-disordered rocksalt (DRX) oxyfluorides are promising candidates for next-generation rechargeable battery cathodes owing to their large energy densities, the earth abundance, and low cost of Mn.
Balasubramanian, M +13 more
core +1 more source
The disordered growth of dendrites, corrosion, parasitic side reactions, slow de‐solvation kinetics, and inherent safety risks significantly hinder the practical deployment of conventional liquid electrolyte zinc‐ion batteries. In contrast, the novel PU‐EG+DMPA‐Zn polyurethane quasi‐solid‐state electrolyte, enriched with abundant polar functional ...
Ruiqi Liu +10 more
wiley +1 more source
Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere +5 more
wiley +1 more source
Failure analysis of the lithium battery: A study of the header deposit on the cell top and diffusion within the electrode glass seal using nuclear microanalysis and FFTIR spectroscopy [PDF]
The Solid Rocket Booster Range Safety System (SRBRSS) uses a lithium/poly-carbon monofluoride primary battery as a source of electrical power. After cell fabrication and activation, some battery cells have shown self discharge.
Hassan, Razi A.
core +1 more source
Precursor‐ and solvent‐mediated synthesis yields four Cu3(HHTP)2 morphologies with distinct physicochemical, sorption, and sensing properties toward SO2. Uptake capacities correlate with BET surface area, while sensing performance scales with particle aspect ratio.
Patrick Damacet +5 more
wiley +1 more source
Lithium Plating and Stripping: Toward Anode‐Free Solid‐State Batteries
Li‐ion batteries (LIBs) have been widely used in portable electronic devices, the transportation sector, and grid storage. However, LIB anodes are restricted to carbon‐based materials limiting their energy density. Recently, the use of metallic Li as the
Ceren Zor +3 more
doaj +1 more source
The graphical abstract illustrates the synthesis pathway, morphological feature, and thermodynamic feasibility of entropy‐engineered NASICON cathodes for sodium‐ion batteries. Abstract Overcoming the energy density limitations of sodium‐ion batteries (NIBs) requires innovative strategies to optimize cathode materials.
Sharad Dnyanu Pinjari +9 more
wiley +1 more source
An adapted processing for solvent‐free argyrodite solid electrolyte films based on insights into degradation mechanisms of the widely used binder polytetrafluoroethylene is presented. By adapting the dry film processing, long‐term cycling in Si||NMC pouch cells is demonstrated over more than 1000 cycles with a capacity retention of more than 80%, and ...
Maria Rosner +10 more
wiley +1 more source

