Results 211 to 220 of about 1,485,207 (315)

Bimetallic (NiFe) and Trimetallic (NiFeCr) Nanoalloys from Metal Oxides Using a Microwave Hydrogen Plasma

open access: yesAdvanced Engineering Materials, EarlyView.
Bimetallic (NiFe) and trimetallic (NiFeCr) nanoalloys (NAs) are synthesized using corresponding oxide mixtures using microwave hydrogen plasma within a few milliseconds. The process simultaneously 1) reduces metal oxides to metals; 2) downsizes the particles from micrometers to nanometers; and 3) blends the metals to form NAs.
Sachin Kumar   +5 more
wiley   +1 more source

Fabrication of Multifunctional FeSi Gyroid Lattice Composites via Additive Manufacturing and Polymer Infiltration

open access: yesAdvanced Engineering Materials, EarlyView.
A two‐step approach combining laser powder bed fusion of FeSi electrical steel with Bakelite infiltration enables the fabrication of multifunctional gyroid lattice composites. The resulting structures exhibit high strength, magnetic anisotropy, and complete polymer infiltration, demonstrating a simple and scalable route toward lightweight, mechanically
Angelo F. Andreoli   +9 more
wiley   +1 more source

A resource to empirically establish drug exposure records directly from untargeted metabolomics data. [PDF]

open access: yesNat Commun
Zhao HN   +58 more
europepmc   +1 more source

Efficient Multifunctional Response and Polarization Switching in BiFeO3–PbZr0.58Ti0.42O3–MnFe2O4‐Based Triphasic Composites for Advanced Pulsating Applications

open access: yesAdvanced Engineering Materials, EarlyView.
Triphasic BiFeO3–PbZr0.58Ti0.42O3–MnFe2O4 composites exhibit enhanced ferroelectric and magnetic behavior, achieving 70.76% energy‐storage efficiency and improved polarization switching. The coupling between ferroelectric and magnetic phases enables multifunctional performance, making these composites promising candidates for next‐generation energy ...
Hassan Raza Khan   +7 more
wiley   +1 more source

Sustainable Synthesis of Bio‐Based Magnetic and Conductive Wood for Electromagnetic Interference Shielding Applications

open access: yesAdvanced Engineering Materials, EarlyView.
A wood‐based magnetic and conductive material called Magwood (MW), capable of blocking almost 99.99% of electromagnetic waves (in the X‐band frequency range), is synthesized using a simple, solvent‐free process. MW is lightweight, resists water, and is flame‐retardant, making it a promising alternative for shielding electronics. The rapid proliferation
Akash Madhav Gondaliya   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy