Results 171 to 180 of about 123,268 (267)

Beyond the Edge: Charge‐Transfer Excitons in Organic Donor‐Acceptor Cocrystals

open access: yesAdvanced Functional Materials, EarlyView.
Complex excitonic landscapes in acene–perfluoroacene cocrystals are unveiled by polarization‐resolved optical spectroscopy and many‐body theory. This systematic study of a prototypical model system for weakly interacting donor–acceptor compounds challenges common views of charge‐transfer excitons, providing a refined conceptual framework for ...
Sebastian Anhäuser   +6 more
wiley   +1 more source

The Cuttlebone Blueprint for Multifunctional Metamaterials: Design Taxonomy, Functional Decoupling, and Future Horizons

open access: yesAdvanced Functional Materials, EarlyView.
Cuttlebone‐inspired metamaterials exploit a septum‐wall architecture to achieve excellent mechanical and functional properties. This review classifies existing designs into direct biomimetic, honeycomb‐type, and strut‐type architectures, summarizes governing design principles, and presents a decoupled design framework for interpreting multiphysical ...
Xinwei Li, Zhendong Li
wiley   +1 more source

Atomic‐Level Ionic Displacement Polarization Enhanced Piezocatalytic Hydrogen Evolution in Covalent Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
Two isomorphic COFs were synthesized and compared, including an amphoteric COF (SQ‐TAPT) and a neutral COF (PDA‐TAPT). The ionic bonds in SQ‐TAPT introduce more Born effective charges, thereby enhancing its ionic displacement polarization. Experimental and theoretical calculations demonstrated that SQ‐TAPT exhibited higher polarity and stronger ...
Ge Yan   +12 more
wiley   +1 more source

Spin Defects in Hexagonal Boron Nitride as 2D Strain Sensors

open access: yesAdvanced Functional Materials, EarlyView.
We demonstrate that boron‐vacancy (VB${\rm V}_{\rm B}$) centers in hexagonal boron nitride (hBN) enable quantitative strain sensing with sub‐micrometer resolution. Using this approach under continuously tunable in‐plane stress, we precisely quantify strain‐induced shifts of the E2g${\rm E}_{2{\rm g}}$ Raman mode in multilayer hBN, establishing VB${\rm ...
Zhao Mu   +7 more
wiley   +1 more source

Inducing Ferromagnetism by Structural Engineering in a Strongly Spin‐Orbit Coupled Oxide

open access: yesAdvanced Functional Materials, EarlyView.
ABSTRACT Magnetic materials with strong spin‐orbit coupling (SOC) are essential for the advancement of spin‐orbitronic devices, as they enable efficient spin‐charge conversion, complex magnetic structures, spin‐valley physics, topological phases and other exotic phenomena.
Ji Soo Lim   +19 more
wiley   +1 more source

Home - About - Disclaimer - Privacy