Results 11 to 20 of about 99 (99)
Unraveling Mycobacterium tuberculosis acid resistance and pH homeostasis mechanisms
Mycobacterium tuberculosis exhibits a remarkable resilience to acid stress. In this Review, we discuss some of the molecular mechanisms and metabolic pathways used by the tubercle bacilli to adapt and resist host‐mediated acid stress. Mycobacterium tuberculosis (Mtb) is a successful pathogen that has developed a variety of strategies to survive and ...
Janïs Laudouze+3 more
wiley +1 more source
Venom peptides have shown promise in treating pain. Our study uses computer screening to identify a peptide that targets a sodium channel (NaV1.7) linked to chronic pain. We produced the peptide in the laboratory and refined its design, advancing the search for innovative pain therapies.
Gagan Sharma+8 more
wiley +1 more source
The power of microRNA regulation—insights into immunity and metabolism
MicroRNAs are emerging as crucial regulators at the intersection of metabolism and immunity. This review examines how miRNAs coordinate glucose and lipid metabolism while simultaneously modulating T‐cell development and immune responses. Moreover, it highlights how cutting‐edge artificial intelligence applications can identify miRNA biomarkers ...
Stefania Oliveto+2 more
wiley +1 more source
Identification of novel small molecule inhibitors of ETS transcription factors
ETS transcription factors play an essential role in tumourigenesis and are indispensable for sprouting angiogenesis, a hallmark of cancer, which fuels tumour expansion and dissemination. Thus, targeting ETS transcription factor function could represent an effective, multifaceted strategy to block tumour growth. The evolutionarily conserved E‐Twenty‐Six
Shaima Abdalla+9 more
wiley +1 more source
The Saccharomyces cerevisiae amino acid transporter Lyp1 has a broad substrate spectrum
In Saccharomyces cerevisiae, Yeast Amino acid Transporter family members mediate the import of amino acids, ranging from substrate specialists to generalists. Here, we show that the specialist transporter, Lyp1, has a broader substrate spectrum than previously described, with affinity constants spanning from micromolar to millimolar.
Foteini Karapanagioti+3 more
wiley +1 more source
In lymphoid organs, antigen recognition and B cell receptor signaling rely on integrins and the cytoskeleton. Integrins act as mechanoreceptors, couple B cell receptor activation to cytoskeletal remodeling, and support immune synapse formation as well as antigen extraction.
Abhishek Pethe, Tanja Nicole Hartmann
wiley +1 more source
Social context prevents heat hormetic effects against mutagens during fish development
This study shows that sublethal heat stress protects fish embryos against ultraviolet radiation, a concept known as ‘hormesis’. However, chemical stress transmission between fish embryos negates this protective effect. By providing evidence for the mechanistic molecular basis of heat stress hormesis and interindividual stress communication, this study ...
Lauric Feugere+5 more
wiley +1 more source
miRNA‐29 regulates epidermal and mesenchymal functions in skin repair
miRNA‐29 inhibits cell‐to‐cell and cell‐to‐matrix adhesion by silencing mRNA targets. Adhesion is controlled by complex interactions between many types of molecules coded by mRNAs. This is crucial for keeping together the layers of the skin and for regenerating the skin after wounding.
Lalitha Thiagarajan+10 more
wiley +1 more source
Spot‐14 and Spot‐14R play distinct roles in regulating metabolism in brown and beige adipocytes. While both influence lipid and glucose pathways, Spot‐14 uniquely controls thermogenic gene expression. This dual regulation balances energy storage and heat production, highlighting potential therapeutic targets for obesity and metabolic disorders. Spot 14
Lidia Itzel Castro‐Rodríguez+3 more
wiley +1 more source
We present the cellular transcription‐coupled Flp‐nick system allowing the introduction of a Top1‐mimicking cleavage complex (Flpcc) at a Flp recognition target site within a controllable LacZ gene. LacZ transcription leads to the collision of RNA polymerase II (RNAPII) with Flpcc, and this causes RNAPII stalling, ubiquitination, and degradation.
Petra Herring+6 more
wiley +1 more source