Results 131 to 140 of about 201,272 (330)
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
Over 100% Light Extraction Enhancement of Organic Light Emitting Diodes Using Flat Moire Micro-Lens Array Fabricated by Double Nanoimprint Lithography Over a Large Area [PDF]
Ji Qi +5 more
openalex +1 more source
Purcell‐Enhanced Spectrally Precise Emission in Dual‐Microcavity Organic Light‐Emitting Diodes
Spectrally precise emission from broadband organic light‐emitting diodes is realized via a dual‐microcavity strategy. This architecture achieves narrowband emission (full width at half maximum, FWHM = 21 nm) with ultrapure color approaching BT.2020 by enhancing the Purcell effect via coupling of excitons with dual‐microcavity resonance.
Jun Yong Kim +3 more
wiley +1 more source
This review highlights how machine learning (ML) algorithms are employed to enhance sensor performance, focusing on gas and physical sensors such as haptic and strain devices. By addressing current bottlenecks and enabling simultaneous improvement of multiple metrics, these approaches pave the way toward next‐generation, real‐world sensor applications.
Kichul Lee +17 more
wiley +1 more source
All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors
We demonstrate cryogenic, electrically-injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 $\mu$m. The active region of the LED consists of W centers implanted in the intrinsic region of a $p$-$i$-$n$ diode.
Buckley, Sonia +8 more
core +1 more source
A single cell type Electro‐chromo‐emissive (ECECL) device integrating synchronized electrochromic (EC) and electrochemiluminescent (ECL) functions is developed using a mixed ionic‐electronic conductor (MIEC). A MIEC layer reduces ionic/electronic resistance, enabling ultrafast switching and enhanced optical contrast.
Hwandong Jang +5 more
wiley +1 more source
Highly Twisted Thermally Activated Delayed Fluorescence (TADF) Molecules and Their Applications in Organic Light‐Emitting Diodes (OLEDs) [PDF]
Tiantian Zhang +7 more
openalex +1 more source
Lead halide perovskite nanocrystals are promising scintillators but suffer from reabsorption losses and limited compatibility with high‐Z additives. Hybridization of CsPbBr3 nanocrystals with PbBr2‐passivated HfO2 nanoparticle sensitizers, achieved during or after synthesis, produces stable composites with maintained optical quality, improved ...
Francesco Bruni +17 more
wiley +1 more source
Mining Unexplored Chemistries for Phosphors for High-Color-Quality White-Light-Emitting Diodes [PDF]
Zhenbin Wang +5 more
openalex +1 more source
Topological van der Waals contacts represent a new class of electrodes for 2D semiconductors, enabling precise control of the Schottky barrier height (SBH) and contact resistance (RC) through interlayer distance and orbital hybridization engineering. In Se‐based transition metal dichalcogenides, these contacts achieve an ultralow SBH of 7 meV, RC of 0.
Soheil Ghods +15 more
wiley +1 more source

