Results 201 to 210 of about 1,470,168 (332)

An Examination of Aerosol Jet‐Printed Surface Roughness and its Impact on the Performance of High‐Frequency Electronics

open access: yesAdvanced Engineering Materials, EarlyView.
This study explores aerosol jet‐printed (AJP) surface roughness, its effects on the performance of microwave electronics, and its process contributors. First, an electromagnetic model is vetted for AJP's unique roughness signature. Simulations are built which show process‐induced roughness is as significant as conductor resistivity in driving microwave
Christopher Areias, Alkim Akyurtlu
wiley   +1 more source

Enhancing the Age‐Hardening Response of Laser Powder‐Bed Fusion WE43 Alloy through Microstructural Control

open access: yesAdvanced Engineering Materials, EarlyView.
Laser powder‐bed fusion (L‐PBF) can produce dense WE43 magnesium alloy parts, but their mechanical properties are limited by a nonhomogeneous microstructure. This study investigates the effects of varying direct aging (T5) and artificial age‐hardening (T6) conditions on microstructure and strength. Optimized T6 treatment significantly improves strength
Prathviraj Upadhyaya   +5 more
wiley   +1 more source

Investigation of Solid‐Solution Phase Formation in AlCuNiSi Medium Entropy Alloys and its Effect on Microstructural, Thermal, and Microhardness Properties

open access: yesAdvanced Engineering Materials, EarlyView.
This study focuses on synthesizing equiatomic AlCuNiSi medium‐entropy alloys using mechanical alloying for advanced industrial applications. Continuous milling leads to grain refinement and the formation of stable BCC/FCC solid‐solution phases, resulting in enhanced mechanical properties. A unique Si‐rich solid‐solution phase is observed, which did not
Mustafa Okumuş   +2 more
wiley   +1 more source

A Study on Thermal Expansion and Thermomechanical Behavior of Composite Metal Foams

open access: yesAdvanced Engineering Materials, EarlyView.
The coefficient of thermal expansion of steel–steel composite metal foam (S‐S CMF) is shown to be lower than that of bulk stainless steel while its performance under compression demonstrate excellent mechanical stability and strength at all temperatures with gradualsoftening from 400 to 600 °C.
Zubin Chacko   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy