Results 291 to 300 of about 6,615,701 (321)
Entropy-Based Uncertainty Quantification in Linear Consecutive k-out-of-n:G Systems via Cumulative Residual Tsallis Entropy. [PDF]
Alarfaj B, Kayid M, Alshehri MA.
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Parameterized linear systems and linearization families for nonlinear systems
IEEE Transactions on Circuits and Systems, 1987Summary: The question of characterizing parameterized linear systems that can arise as linearization families of a nonlinear system about a family of constant operating points is addressed. The parameterization can be in terms of operating-point inputs or operating-point outputs.
Wilson J. Rugh, Jianliang Wang
openaire +2 more sources
1996
Bestimmen Sie den Schnittpunkt der Geraden mit den Funktionsgleichungen $$y = \frac{2}{3}x - 1\;und\;y = - \frac{1}{3}x + 2$$ .
openaire +2 more sources
Bestimmen Sie den Schnittpunkt der Geraden mit den Funktionsgleichungen $$y = \frac{2}{3}x - 1\;und\;y = - \frac{1}{3}x + 2$$ .
openaire +2 more sources
Linear Systems and Linearization
2010Key to the analysis of nonlinear systems is determining the stability of the equilibria. The classical method of determining stability is to linearize the system about the equilibrium and to determine exponential rates of growth and decay for the associated linear system. The framework for carrying this out is taken up in this chapter.
openaire +2 more sources
1996
Die Losung der Zustandsgleichung beschreibt das zeitliche Verhalten eines Systems. Im ersten Teil dieses Kapitels wird die Bewegungsgleichung fur unterschiedliche Formen des Zustandsraummodells angegeben und diskutiert. Daraus werden anschliesend die Ubergangsfunktion und die Gewichtsfunktion als wichtige Kennfunktionen fur das Ubertragungsverhalten ...
openaire +2 more sources
Die Losung der Zustandsgleichung beschreibt das zeitliche Verhalten eines Systems. Im ersten Teil dieses Kapitels wird die Bewegungsgleichung fur unterschiedliche Formen des Zustandsraummodells angegeben und diskutiert. Daraus werden anschliesend die Ubergangsfunktion und die Gewichtsfunktion als wichtige Kennfunktionen fur das Ubertragungsverhalten ...
openaire +2 more sources
1986
We shall now consider in some detail a systematic method of solving systems of linear equations. In working with such systems, there are three basic operations involved: (1) interchanging two equations (usually for convenience); (2) multiplying an equation by a non-zero scalar; (3) forming a new equation by adding one ...
T. S. Blyth, Edmund F. Robertson
openaire +2 more sources
We shall now consider in some detail a systematic method of solving systems of linear equations. In working with such systems, there are three basic operations involved: (1) interchanging two equations (usually for convenience); (2) multiplying an equation by a non-zero scalar; (3) forming a new equation by adding one ...
T. S. Blyth, Edmund F. Robertson
openaire +2 more sources
1941
In ยง 21 ist fur einen besonderen Fall die Losung eines Systems linearer Gleichungen gegeben worden.
openaire +2 more sources
In ยง 21 ist fur einen besonderen Fall die Losung eines Systems linearer Gleichungen gegeben worden.
openaire +2 more sources
2013
In den vergangenen Kapiteln sind wiederholt Systeme untersucht, ihre grafischen und mathematischen Modelle aufgestellt und durch Simulation das Verhalten fur bestimmte Parameterwerte ermittelt worden. Dabei hatte sich schon angedeutet, dass fur das Verhalten des Systems die Anzahl unabhangiger Speicherelemente eine wichtige Rolle spielt.
openaire +2 more sources
In den vergangenen Kapiteln sind wiederholt Systeme untersucht, ihre grafischen und mathematischen Modelle aufgestellt und durch Simulation das Verhalten fur bestimmte Parameterwerte ermittelt worden. Dabei hatte sich schon angedeutet, dass fur das Verhalten des Systems die Anzahl unabhangiger Speicherelemente eine wichtige Rolle spielt.
openaire +2 more sources
Systems of Linear Equations [PDF]
The theory of finite-dimensional vector spaces was created primarily in connection with one problem, and that is the simultaneous solution of a system of k linear equations in n indeterminates over a field F of the form $$ \begin{gathered} {a_{11}}{X_1} + ... + {a_{1n}}{X_n} = {b_1} \hfill \\ {a_{21}}{X_1} + ...
openaire +1 more source
Fuzzy Sets and Systems, 1992
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +4 more sources
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +4 more sources

