Results 291 to 300 of about 2,659,919 (342)
Systems of Linear Equations [PDF]
The theory of finite-dimensional vector spaces was created primarily in connection with one problem, and that is the simultaneous solution of a system of k linear equations in n indeterminates over a field F of the form $$ \begin{gathered} {a_{11}}{X_1} + ... + {a_{1n}}{X_n} = {b_1} \hfill \\ {a_{21}}{X_1} + ...
openaire +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Linear Systems and Linearization
2010Key to the analysis of nonlinear systems is determining the stability of the equilibria. The classical method of determining stability is to linearize the system about the equilibrium and to determine exponential rates of growth and decay for the associated linear system. The framework for carrying this out is taken up in this chapter.
openaire +2 more sources
1996
Die Losung der Zustandsgleichung beschreibt das zeitliche Verhalten eines Systems. Im ersten Teil dieses Kapitels wird die Bewegungsgleichung fur unterschiedliche Formen des Zustandsraummodells angegeben und diskutiert. Daraus werden anschliesend die Ubergangsfunktion und die Gewichtsfunktion als wichtige Kennfunktionen fur das Ubertragungsverhalten ...
openaire +2 more sources
Die Losung der Zustandsgleichung beschreibt das zeitliche Verhalten eines Systems. Im ersten Teil dieses Kapitels wird die Bewegungsgleichung fur unterschiedliche Formen des Zustandsraummodells angegeben und diskutiert. Daraus werden anschliesend die Ubergangsfunktion und die Gewichtsfunktion als wichtige Kennfunktionen fur das Ubertragungsverhalten ...
openaire +2 more sources
1941
In § 21 ist fur einen besonderen Fall die Losung eines Systems linearer Gleichungen gegeben worden.
openaire +2 more sources
In § 21 ist fur einen besonderen Fall die Losung eines Systems linearer Gleichungen gegeben worden.
openaire +2 more sources
Linear Systems and Polynomials
1984One of the main applications of polynomial theory occurs in the analysis of linear electrical circuits and the many other physical situations that are customarily represented by linear-circuit analogs. With the advent of computers and digital signal processing, time-discrete systems have taken on a special significance, and these are effectively ...
openaire +2 more sources
2013
In den vergangenen Kapiteln sind wiederholt Systeme untersucht, ihre grafischen und mathematischen Modelle aufgestellt und durch Simulation das Verhalten fur bestimmte Parameterwerte ermittelt worden. Dabei hatte sich schon angedeutet, dass fur das Verhalten des Systems die Anzahl unabhangiger Speicherelemente eine wichtige Rolle spielt.
openaire +2 more sources
In den vergangenen Kapiteln sind wiederholt Systeme untersucht, ihre grafischen und mathematischen Modelle aufgestellt und durch Simulation das Verhalten fur bestimmte Parameterwerte ermittelt worden. Dabei hatte sich schon angedeutet, dass fur das Verhalten des Systems die Anzahl unabhangiger Speicherelemente eine wichtige Rolle spielt.
openaire +2 more sources
Linear Transformations and Linear Systems
2020Machine learning algorithms work with data matrices, which can be viewed as collections of row vectors or as collections of column vectors. For example, one can view the rows of an n × d data matrix D as a set of n points in a space of dimensionality d, and one can view the columns as features. These collections of row vectors and column vectors define
openaire +2 more sources
1978
In the historical development of linear algebra the geometry of linear transformations and the algebra of systems of linear equations played significant and important roles. A system of linear equations has the form $$\begin{gathered} {{a}_{{1,1}}}{{x}_{1}} + {{a}_{{1,2}}}{{x}_{2}} + \cdots + {{a}_{{1,n}}}{{x}_{n}} = {{b}_{1}}, \hfill \\ {{a}_{{2,1}
openaire +2 more sources
In the historical development of linear algebra the geometry of linear transformations and the algebra of systems of linear equations played significant and important roles. A system of linear equations has the form $$\begin{gathered} {{a}_{{1,1}}}{{x}_{1}} + {{a}_{{1,2}}}{{x}_{2}} + \cdots + {{a}_{{1,n}}}{{x}_{n}} = {{b}_{1}}, \hfill \\ {{a}_{{2,1}
openaire +2 more sources
1959
We shall consider first linear differential systems $$ {x_{i}}' = \sum\limits_{{j = 1}}^{n} {{a_{{ij}}}(t){x_{j}}\quad } i = 1,...,n, $$ (3.1.1) i.e., x’ = A(t)x, x = (x1..., x n ), A(t) = [aij(t)], and linear differential equations $$ {x^{{(n)}}} + {a_{1}}(t)\;{x^{{(n - 1)}}} + ... + {a_{n}}(t)\;x = 0, $$ (3.1.2) whose coefficients
openaire +2 more sources
We shall consider first linear differential systems $$ {x_{i}}' = \sum\limits_{{j = 1}}^{n} {{a_{{ij}}}(t){x_{j}}\quad } i = 1,...,n, $$ (3.1.1) i.e., x’ = A(t)x, x = (x1..., x n ), A(t) = [aij(t)], and linear differential equations $$ {x^{{(n)}}} + {a_{1}}(t)\;{x^{{(n - 1)}}} + ... + {a_{n}}(t)\;x = 0, $$ (3.1.2) whose coefficients
openaire +2 more sources
1964
1. Unter einer algebraischen Gleichung n-ten Grades in x versteht man ein gleich Null gesetztes Polynom n-ten Grades in x worin die Koeffizienten A0, Al, ..., An bekannte reelle Zahlen und An ≠ 0 sein sollen. 2. Eine Zahl xl heist Losung (Wurzel) der Gleichung, wenn sie diese identisch erfullt:
openaire +2 more sources
1. Unter einer algebraischen Gleichung n-ten Grades in x versteht man ein gleich Null gesetztes Polynom n-ten Grades in x worin die Koeffizienten A0, Al, ..., An bekannte reelle Zahlen und An ≠ 0 sein sollen. 2. Eine Zahl xl heist Losung (Wurzel) der Gleichung, wenn sie diese identisch erfullt:
openaire +2 more sources