Results 141 to 150 of about 739,004 (301)

A high‐energy‐density long‐cycle lithium–sulfur battery enabled by 3D graphene architecture

open access: yesCarbon Energy
Lithium–sulfur (Li–S) battery is attracting increasing interest for its potential in low‐cost high‐density energy storage. However, it has been a persistent challenge to simultaneously realize high energy density and long cycle life.
Yan Cheng   +12 more
doaj   +1 more source

Sulfonated Cellulose Acetate Nanofibers Induced Zincophilic‐Hydrophobic Interface to Regulate Ion Transport for Long‐Lifespan Zinc‐Iodine Batteries

open access: yesAdvanced Science, EarlyView.
Sulfonated cellulose acetate (SCA) nanofiber membrane with zincophilic‐hydrophobic property is constructed on the surface of the Zn anode by the electrospinning technique to tune the 3D deposition behavior of Zn2+ by chemisorption and micro‐sized physical structure. The negatively‐charged groups of SCA nanofiber membrane form an electrostatic repulsion
Wendan Zhang   +13 more
wiley   +1 more source

A Lithium-Sulfur Battery Using Binder-Free Graphene-Coated Aluminum Current Collector. [PDF]

open access: yesEnergy Fuels, 2022
Brehm W   +7 more
europepmc   +1 more source

Breaking the Thick Electrode Paradox With an in situ VS2@V2CTx MXene Heterostructure for High‐Areal‐Capacity Batteries

open access: yesAdvanced Science, EarlyView.
This work pioneers an in situ gas‐phase conversion strategy to construct VS2@V2Tx heterostructures within a MWCNT network. The integrated architecture establishes interpenetrating electron/ion highways, enabling an ultra‐thick electrode (300 µm) to achieve a high areal capacity of 13.6 mAh cm−2 with exceptional cycling stability, demonstrating great ...
Lirong Wang   +9 more
wiley   +1 more source

Electrical Power Working Group report [PDF]

open access: yes
The status of and need for power technologies for Spacecraft 2000 were assessed and development programs required to establish an achievable and competitive technology base for spacecraft of the 21st century were identified.
Myers, Ira T., Vanommering, Gerrit
core   +1 more source

Metastable Structure for Ultra‐Sustainable, High Capacity and Kinetics‐Enhanced Magnesium‐Ion Battery

open access: yesAdvanced Science, EarlyView.
A metastable‐phase evolution strategy is proposed for magnesium‐ion batteries, enabling the in situ formation of a metastable MgxT‐VS4 cathode during cycling. The metastable state reshapes Mg2+ storage kinetics and enhances structural stability, offering a new design paradigm for multivalent ion battery cathodes.
Rongrui Deng   +12 more
wiley   +1 more source

Multi-Dimensional Composite Frame as Bifunctional Catalytic Medium for Ultra-Fast Charging Lithium-Sulfur Battery. [PDF]

open access: yesNanomicro Lett, 2022
Tian S   +11 more
europepmc   +1 more source

Tuning Li+ and Na+ Functionality in Renewable Carbon Electroactive Material Through Site‐Specific Nanostructural Disorder

open access: yesAdvanced Science, EarlyView.
This study presents a selective thermal transformation of polycarbonate into hybrid carbon materials. The structured carbon enhances electrochemical performance, particularly in lithium‐ion systems. Investigations reveal improved bimetallic ion diffusivity through the hybrid microstructure, contributing to excellent charge kinetics.
Montajar Sarkar   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy