Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery [PDF]
A polyisoprene-sulfur (PIPS) copolymer and nano sulfur composite material (90 wt % sulfur) is synthesized through inverse vulcanization of PIP polymer with micrometer-sized sulfur particles for high-areal-capacity lithium sulfur batteries.
Fang, C +7 more
core +1 more source
Electrotunable liquid sulfur microdroplets. [PDF]
Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge.
Brongersma, Mark L +17 more
core +2 more sources
Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are
X. Tao +11 more
semanticscholar +1 more source
Kalman-variant estimators for state of charge in lithium-sulfur batteries [PDF]
Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for ...
Auger, Daniel J. +4 more
core +2 more sources
Application of sulfur-based composite materials in the positive electrode of lithium-sulfur batteries [PDF]
Traditional lithium-ion batteries are no longer able to keep up with the growing need for energy storage efficiency in areas like electric cars and renewable energy storage.
Li Tonglin
doaj +1 more source
Identification of Soluble Degradation Products in Lithium–Sulfur and Lithium-Metal Sulfide Batteries
Most commercially available lithium ion battery systems and some of their possible successors, such as lithium (metal)-sulfur batteries, rely on liquid organic electrolytes.
Fabian Horsthemke +13 more
doaj +1 more source
Mechanistic understanding of the role separators playing in advanced lithium‐sulfur batteries
The lithium‐sulfur battery is considered one of the most promising candidates for portable energy storage devices due to its low cost and high energy density.
Zhaohuan Wei +4 more
doaj +1 more source
Research Progress of the Solid State Lithium-Sulfur Batteries
Lithium-sulfur batteries using lithium as the anode and sulfur as the cathode can achieve a theoretical energy density (2,600 Wh.g−1) several times higher than that of Li ion batteries based on the chemical conversion reaction of 6Li + S8 ↔ 8Li2S.
HangChao Wang +3 more
doaj +1 more source
Methods to Improve Lithium Metal Anode for Li-S Batteries
The lithium-sulfur (Li-S) battery has received a lot of attention because it is characterized by high theoretical energy density (2,600 Wh/kg) and low cost.
Xiaosong Xiong +8 more
doaj +1 more source
An overview of the characteristics of advanced binders for high-performance Li–S batteries
The lithium-sulfur battery (Li–S) is a promising energy storage system with many advantages over the commercialized lithium-ion battery. It has a high theoretical capacity of 1675 mAh g−1, a high theoretical energy density (2600 Wh kg−1), and is eco ...
Jun Zhang +6 more
doaj +1 more source

