Results 181 to 190 of about 23,769 (301)

Impact of Moisture Exposure on Thermal Stability and Safety of Solid‐State Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Sulfide‐based solid‐state batteries (SSBs) hold significant potential for next‐generation energy storage, yet their practical deployment is hindered by the moisture sensitivity of sulfide solid electrolytes. This study examines how moisture exposure influences thermo‐electrochemical instability at the material and cell‐level, and underscores the ...
Md Toukir Hasan   +7 more
wiley   +1 more source

Impact of Extrusion and Direct Calendering on Dry‐Coated Cathodes for Sulfidic All‐Solid‐State Batteries

open access: yesAdvanced Energy Materials, EarlyView.
This work demonstrates a parameter optimization for a scalable dry coating process of sulfidic ASSB cathodes (82 wt% CAM, 0.5 wt% PTFE binder) in dry room atmosphere. High‐shear extruder mixing and calendering are used to form a cathode film based on PTFE fibrillation.
Michael Wolf   +9 more
wiley   +1 more source

Hybrid Li-Ion and Li-O-2 Battery Enabled by Oxyhalogen-Sulfur Electrochemistry [PDF]

open access: yes, 2018
Alvarado, Judith   +13 more
core   +1 more source

Stage‐Specific Roles of Deep Eutectic Solvents in Recycling of Spent Lithium‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Deep eutectic solvents (DESs) offer tunable acidity, redox, and coordination properties for selective recycling of spent lithium‐ion battery cathodes. Through co‐dissolution, single‐ and two‐metal separations, DESs enable sustainable recovery of critical metals for closed‐loop regeneration of battery‐grade materials, advancing a circular economy for ...
Jingxiu Wang   +4 more
wiley   +1 more source

Pristine MOF Materials for Separator Application in Lithium-Sulfur Battery. [PDF]

open access: yesAdv Sci (Weinh)
Cheng Z   +5 more
europepmc   +1 more source

Enhancing Ion‐Electron Transport in Positive Electrode of Solid‐State Lithium Metal Batteries With Multifunctional Catholyte Made of Polymer Mixed Ionic‐Electronic Conductor PEDOT:PSSTFSI and Li3InCl6

open access: yesAdvanced Energy Materials, EarlyView.
A mixed ion‐electron conducting polymer binder, PEDOT:PSSTFSI, enhances both ionic and electronic transport in NMC‐based positive electrode composite (PEC) for ASSBs. Optimal polymer loading (0.33 wt.% in PEC) provides the most balanced transport, with an effective conductivities (σel/σion) ratio closest to unity, enabling high discharge capacity at 1 ...
Elina Nazmutdinova   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy