Results 11 to 20 of about 23,769 (301)

Binding mechanism and electrochemical properties of M13 phage-sulfur composite. [PDF]

open access: yesPLoS ONE, 2013
Self-assembly of nanostructured materials has been proven a powerful technique in material design and synthesis. By phage display screening, M13 phage was found to strongly bind sulfur particles.
Dexian Dong   +4 more
doaj   +1 more source

Recent Progress in Quasi/All-Solid-State Electrolytes for Lithium–Sulfur Batteries

open access: yesFrontiers in Energy Research, 2022
Lithium–sulfur batteries have received increasing research interest due to their superior theoretical capacity, cost-effectiveness, and eco-friendliness.
Shichun Yang   +8 more
doaj   +1 more source

A Foldable Lithium–Sulfur Battery [PDF]

open access: yesACS Nano, 2015
The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices.
Lu, Li   +8 more
openaire   +3 more sources

Environmentally Friendly Recovery of Lithium from Lithium–Sulfur Batteries

open access: yesMetals, 2022
In the context of the rising demand for electric storage systems, lithium–sulfur batteries provide an attractive solution for low-weight and high-energy battery systems. Considering circular economy for new technologies, it is necessary to assure the raw
Lilian Schwich, Bernd Friedrich
doaj   +1 more source

Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery [PDF]

open access: yes, 2019
A polyisoprene-sulfur (PIPS) copolymer and nano sulfur composite material (90 wt % sulfur) is synthesized through inverse vulcanization of PIP polymer with micrometer-sized sulfur particles for high-areal-capacity lithium sulfur batteries.
Fang, C   +7 more
core   +1 more source

Electrotunable liquid sulfur microdroplets. [PDF]

open access: yes, 2020
Manipulating liquids with tunable shape and optical functionalities in real time is important for electroactive flow devices and optoelectronic devices, but remains a great challenge.
Brongersma, Mark L   +17 more
core   +2 more sources

Kalman-variant estimators for state of charge in lithium-sulfur batteries [PDF]

open access: yes, 2017
Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for ...
Auger, Daniel J.   +4 more
core   +2 more sources

Application of sulfur-based composite materials in the positive electrode of lithium-sulfur batteries [PDF]

open access: yesE3S Web of Conferences
Traditional lithium-ion batteries are no longer able to keep up with the growing need for energy storage efficiency in areas like electric cars and renewable energy storage.
Li Tonglin
doaj   +1 more source

Identification of Soluble Degradation Products in Lithium–Sulfur and Lithium-Metal Sulfide Batteries

open access: yesSeparations, 2022
Most commercially available lithium ion battery systems and some of their possible successors, such as lithium (metal)-sulfur batteries, rely on liquid organic electrolytes.
Fabian Horsthemke   +13 more
doaj   +1 more source

Mechanistic understanding of the role separators playing in advanced lithium‐sulfur batteries

open access: yesInfoMat, 2020
The lithium‐sulfur battery is considered one of the most promising candidates for portable energy storage devices due to its low cost and high energy density.
Zhaohuan Wei   +4 more
doaj   +1 more source

Home - About - Disclaimer - Privacy