Results 131 to 140 of about 804,295 (385)
Cycling efficiency and rate capability of porous copper-coated, amorphous silicon thin-film negative electrodes are compared to equivalent silicon thin-film electrodes in lithium-ion batteries. The presence of a copper layer coated on the active material
Kowolik, Kristin +2 more
core +1 more source
Electrochemical abuse transforms thermal runaway behavior in lithium‐ion batteries. Through systematic decoupling of degradation mechanisms, this study reveals that lithium plating lowers the onset temperature by 10 °C, electrolyte consumption delays high‐temperature reactions, and capacity fade reduces total heat generation. These mechanistic insights
San Hwang +12 more
wiley +1 more source
Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner +9 more
wiley +1 more source
A dual‐functional Li2B4O7 coating on carbon fibers is designed to resolve the critical interfacial degradation in sulfide all‐solid‐state batteries. The conformal layer acts as a physical barrier to suppress parasitic reactions while its unique dielectric properties simultaneously facilitate Li+ transport.
Yeonghoon Kim +5 more
wiley +1 more source
An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted.
Yanwen Liu +12 more
semanticscholar +1 more source
Extensive Review of Materials for Next‐Generation Transparent Batteries and Their Design Strategies
Review explores emerging materials and design strategies for transparent batteries, examining electrodes, electrolytes, separators, and device architectures optimized for high electrochemical performance, mechanical flexibility, and optical transparency.
Atul Kumar Mishra +5 more
wiley +1 more source
Bio‐Inspired Nanoarchitected LiFePO4 Cathodes
Lithium iron phosphate (LFP) is synthesized using a bio‐inspired method, using acidic macromolecules similar to those found in many calcareous mineralized organisms to modulate the morphology and crystal growth of LFP‐carbon composite particles. The observations from this process indicate a non‐classical crystallization process, which subsequently ...
Parawee Pumwongpitak +8 more
wiley +1 more source
Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries [PDF]
Kevin Leung +6 more
openalex +1 more source
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun +8 more
wiley +1 more source

