Results 41 to 50 of about 49,087 (313)

Construction of Polypyrrole-Coated CoSe2 Composite Material for Lithium-Sulfur Battery

open access: yesNanomaterials, 2023
Lithium-sulfur batteries with high theoretical energy density and cheap cost can meet people’s need for efficient energy storage, and have become a focus of the research on lithium-ion batteries.
Yinbo Wu   +7 more
doaj   +1 more source

Ferrocene Derivatives Enable Ultrasensitive Perovskite Photodetectors with Enhanced Reverse Bias Stability

open access: yesAdvanced Functional Materials, EarlyView.
Novel ferrocene derivatives (e.g., FcPhc2) are used as an ultrathin layer hole‐blocking layer, reducing hole injection from the Ag contact. This results in an ultralow noise spectral density of 1.2 × 10−14 A Hz−1/2, and a high specific detectivity of 8.1 × 1012 Jones at −0.5 V.
Eunyoung Hong   +16 more
wiley   +1 more source

Understanding and Optimizing Li Substitution in P2‐Type Sodium Layered Oxides for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous 
Mingfeng Xu   +5 more
wiley   +1 more source

Intramolecular Down‐ and Up‐Conversion in Dimeric Tetracene Complexes Centered via Platinum(II) and Palladium(II)

open access: yesAdvanced Functional Materials, EarlyView.
Metal‐tetracene dimeric complexes are synthesized through the pyridyl coordination to either Pt(II) or Pd(II). Photophysical properties are systematically compared as a function of the metal using steady‐state and time‐resolved spectroscopy. The Pt(II) dimer exhibits efficient intramolecular singlet fission and subsequent intramolecular up‐conversion ...
Yifan Bo   +4 more
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Identification of potential therapeutic drugs for huntington's disease using Caenorhabditis elegans. [PDF]

open access: yesPLoS ONE, 2007
The prolonged time course of Huntington's disease (HD) neurodegeneration increases both the time and cost of testing potential therapeutic compounds in mammalian models.
Cindy Voisine   +5 more
doaj   +1 more source

Computational Understanding of Delithiation, Overlithiation, and Transport Properties in Disordered Cubic Rock-Salt Type Li2TiS3

open access: yesNanomaterials, 2023
Lithium–titanium–sulfur cathodes have gained attention because of their unique properties and have been studied for their application in lithium-ion batteries.
Riccardo Rocca   +4 more
doaj   +1 more source

Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions

open access: yesAdvanced Functional Materials, EarlyView.
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng   +7 more
wiley   +1 more source

Unlocking Ultra‐Long Cycle Stability of Li Metal Electrode by Separators Modified by Porous Red Phosphorus Nanosheets

open access: yesAdvanced Functional Materials, EarlyView.
Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition
Jiangpeng Wang   +9 more
wiley   +1 more source

Recent advances in rare earth compounds for lithium–sulfur batteries

open access: yeseScience
Lithium–sulfur batteries are considered potential high-energy-density candidates to replace current lithium-ion batteries. However, several problems remain to be solved, including low conductivity, huge volume change, and a severe shuttle effect on the ...
Bixia Lin   +7 more
doaj   +1 more source

Home - About - Disclaimer - Privacy