Results 131 to 140 of about 17,000 (253)

Upscaling Sodium‐Ion Battery Cells: From Aqueous Processing to Performance Assessment of Hard Carbon|Prussian White Pouch Cells

open access: yesAdvanced Energy Materials, EarlyView.
This study investigates the feasibility of scaling up Prussian White (PW)‐based cathode manufacturing at a pilot scale. Through careful PW dehydration combined with optimized aqueous processing, we report the stepwise development of industrially relevant 1 Ah pouch cells and evaluate their performance under various conditions.
Faduma M. Maddar   +7 more
wiley   +1 more source

Single-crystal orientation lithium for ultra-stable all-solid-state batteries. [PDF]

open access: yesNatl Sci Rev
Li Q   +24 more
europepmc   +1 more source

Interface Stabilization via In Situ Lithiated Sn Interlayer in All‐Solid‐State Li‐Metal Batteries: Toward Pellet‐Type Cell to Pouch‐Type Cell

open access: yesAdvanced Energy Materials, EarlyView.
An in situ lithiated Sn interlayer forms a stable, lithiophilic, and conductive interface that enables durable and scalable pouch‐type all‐solid‐state lithium metal batteries under low pressure. ABSTRACT All‐solid‐state batteries (ASSBs) are among the most promising candidates for next‐generation energy storage due to their high energy density and ...
Garam Kim   +14 more
wiley   +1 more source

Electric‐Field‐Driven Bilayer Interphase from Oxygenated Nanodiamond‐Carbon Nanoparticles for Dendrite‐Free Lithium Metal Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Electric‐field‐driven carbon migration within an oxygen‐functionalized nanodiamond/carbon composite induces the formation of a vertically graded interphase that homogenizes Li‐ion flux and suppresses dendritic nucleation. This hierarchically organized structure stabilizes the electrode–electrolyte interface and delivers durable, dendrite‐free operation
Jaeseong Kim   +9 more
wiley   +1 more source

Comparative Insights and Overlooked Factors of Interphase Chemistry in Alkali Metal‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
This review presents a comparative analysis of Li‐, Na‐, and K‐ion batteries, focusing on the critical role of electrode–electrolyte interphases. It especially highlights overlooked aspects such as SEI/CEI misconceptions, binder effects, and self‐discharge relevance, emphasizing the limitations of current understanding and offering strategies for ...
Changhee Lee   +3 more
wiley   +1 more source

Surface Functionalization of Si Nanoparticles by Hydrosilylation: Access to High‐Performance Si Anodes for Li‐Ion Batteries

open access: yesAdvanced Energy and Sustainability Research, EarlyView.
Surface‐functionalized SiNPs are synthesized by a simple and scalable hydrosilylation method using 4‐vinylpyridine (4VP), 1‐vinyl‐2‐pyrrolidinone (1V2P), and acrylic acid (AA). The Si‐4VP‐based Li‐ion cells achieved a promising long life of 300 cycles, retaining 60% of the initial capacity (2375 mAh g−1).
Sadananda Muduli   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy