Results 131 to 140 of about 455,502 (342)

Localized High‐Concentration Electrolyte with Water‐Miscible Diluent Enables Stable Zinc Deposition and Long‐Life Aqueous Zinc Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A diisopropyl ether (DIPE)‐based, localized, high‐concentration electrolyte is developed to stabilize both electrodes in aqueous zinc batteries. By reducing water activity and promoting anion‐rich zinc‐ion solvation, it builds robust interphases at both the cathode and anode, ensuring uniform deposition, suppressed corrosion, and highly reversible ...
Yuxuan Wu   +4 more
wiley   +1 more source

Development trend of cathode materials commonly used in lithium batteries [PDF]

open access: yesE3S Web of Conferences
With the profound scientific and economic advances, people’s demand for electronic products is increasing daily. Lithium-ion batteries are broadly applied due to their significant advantages in weight, volume, and lifespan.
Gongsebaimu
doaj   +1 more source

Dual‐Interface‐Dominant Cathode Architectures Enabling Fast Sulfur Redox and Stable Interfaces in All‐Solid‐State Li‐S Batteries

open access: yesAdvanced Functional Materials, EarlyView.
An optimized carbon host nanostructure enables a dual‐interface‐dominant architecture in sulfur cathodes of solid‐state Li‐S batteries by selectively forming sulfur|carbon and sulfur|solid electrolyte interfaces. This tailored interfacial configuration accelerates sulfur redox kinetics by establishing enriched Li+/e– transport networks, while ...
Zhao Yang   +13 more
wiley   +1 more source

Bio‐Inspired Molecular Events in Poly(Ionic Liquids)

open access: yesAdvanced Functional Materials, EarlyView.
Originating from dipolar and polar inter‐ and intra‐chain interactions of the building blocks, the topologies and morphologies of poly(ionic liquids) (PIL) govern their nano‐ and micro‐processibility. Modulating the interactions of cation‐anion pairs with aliphatic dipolar components enables the tunability of properties, facilitated by “bottom‐up ...
Jiahui Liu, Marek W. Urban
wiley   +1 more source

Performance and Safety of Lithium-ion Capacitors [PDF]

open access: yes
Lithium-ion capacitors (LIC) are a recent innovation in the area of supercapacitors and ultracapacitors. With an operating voltage range similar to that of lithium-ion batteries and a very low selfdischarge rate, these can be readily used in the place of
Jeevarajan, Judith A.   +1 more
core   +1 more source

High Energy Density Asymmetric Aqueous Supercapacitor Based on a 2D Manganese Carbide as a Positive Electrode

open access: yesAdvanced Functional Materials, EarlyView.
A circular route, involving upcycling of waste surgical masks, affords a Mn‐based layered carbide with porosity, redox activity and low work function. These features enable its effective operation as positive supercapacitor electrode in an aqueous asymmetric supercapacitor delivering 213 Wh L−1 energy density.
Debabrata Nandi   +7 more
wiley   +1 more source

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development

open access: yes, 2015
The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage.
Crabtree, George
core   +1 more source

Bioinspired Polypeptide Dendrimer‐Modified Thin‐Film Composite Membranes for Selective Lithium‐Magnesium Separation with DFT Insights

open access: yesAdvanced Functional Materials, EarlyView.
We fabricated a biomimetic dendrimer‐modified thin‐film nanocomposite membrane with a coordination‐assisted ion‐selective interface. pH‐responsive polypeptide sites preferentially bind Mg2+ and promote Li+ permeation, as predicted by density functional theory calculations of metal‐ligand interactions.
Mehrasa Yassari   +7 more
wiley   +1 more source

Frontier Advances of Emerging High‐Entropy Anodes in Alkali Metal‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Recent advances in microscopic morphology control of high‐entropy anode materials for alkali metal‐ion batteries. Abstract With the growing demand for sustainable energy, portable energy storage systems have become increasingly critical. Among them, the development of rechargeable batteries is primarily driven by breakthroughs in electrode materials ...
Liang Du   +14 more
wiley   +1 more source

Increased Cycling Efficiency and Rate Capability of Copper-coated Silicon Anodes in Lithium-ion Batteries

open access: yes, 2011
Cycling efficiency and rate capability of porous copper-coated, amorphous silicon thin-film negative electrodes are compared to equivalent silicon thin-film electrodes in lithium-ion batteries. The presence of a copper layer coated on the active material
Kowolik, Kristin   +2 more
core   +1 more source

Home - About - Disclaimer - Privacy