Results 101 to 110 of about 3,304,767 (347)
A lithium metal–free battery (LMFB, so‐called anode‐free batteries) offers an ideal configuration of lithium metal batteries (LMB), theoretically achieving the highest energy density by eliminating excess lithium metal on the negative electrode. However,
Fumiyasu Nozaki +2 more
doaj +1 more source
Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley +1 more source
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou +8 more
wiley +1 more source
Higher depletion of lithium in planet host stars: no age and mass effect
Recent observational work by Israelian et al. has shown that sun-like planet host stars in the temperature range 5700K < Teff < 5850K have lithium abundances that are significantly lower than those observed for "single" field stars. In this letter we use
Castro +48 more
core +1 more source
Powering the Future: A Cobalt‐Based Catalyst for Longer‐Lasting Zinc–Air Batteries
A novel N‐doped graphitic shell‐encapsulated Co catalyst reveals superior bifunctional ORR/OER activity in alkaline media, empowering outstanding liquid and quasi‐solid‐state ZAB activity. The system delivers long‐term durability, a peak power density of 127 mW cm−2 and successfully powers an LED and a mini fan.
Manami Banerjee +10 more
wiley +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
We study how the Mott metal-insulator transition (MIT) is influenced when we deal with electrons with different angular momenta. For lithium we found an essential effect when we include $p$-orbitals in the description of the Hilbert space.
Aebischer +20 more
core +2 more sources
Purcell‐Enhanced Spectrally Precise Emission in Dual‐Microcavity Organic Light‐Emitting Diodes
Spectrally precise emission from broadband organic light‐emitting diodes is realized via a dual‐microcavity strategy. This architecture achieves narrowband emission (full width at half maximum, FWHM = 21 nm) with ultrapure color approaching BT.2020 by enhancing the Purcell effect via coupling of excitons with dual‐microcavity resonance.
Jun Yong Kim +3 more
wiley +1 more source
The article reviews laser‐processed carbons from various precursors, processing mechanism and their application in advanced batteries. The laser process is chemical free, fast, and scalable, enabling improved battery performance and stability for Li, Na, and Zn battery technologies.
Sujit Deshmukh +2 more
wiley +1 more source
Dynamic analysis of a lithium-boiling potassium refractory metal Rankine cycle power system for the Jet Propulsion Laboratory [PDF]
Lithium-boiling potassium refractory metal Rankine cycle power system heat transfer ...
Connelly, D. A. +4 more
core +1 more source

