Results 231 to 240 of about 192,875 (330)

γ‐Valerolactone‐Based Anion‐Dominated Loose Solvation Electrolyte Enables Stable Lithium Metal Batteries from −60°C to 100°C

open access: yesAdvanced Science, EarlyView.
The precise regulation of GVL's solvation structure by two weak solvents with distinct functions promotes the formation of an anion‐dominated loose solvation structure, enabling the stable generation of EEI to protect the structural integrity of cathode materials and promote the uniform deposition of lithium.
Lei Zhang   +14 more
wiley   +1 more source

Multifunctional Phosphate Monomer Enabling LiNO3 Solvation and In Situ Formation of Flame‐Retardant Gel Polymer Electrolyte for High‐Voltage Lithium Metal Batteries

open access: yesAdvanced Science, EarlyView.
A phosphorus‐containing multifunctional monomer is successfully synthesized to simultaneously enable the dissolution of lithium nitrate in ester‐based electrolytes and in situ form a flame‐retardant gel polymer electrolyte (GPE). The formed GPE effectively stabilizes the structures of both the cathode and anode, thereby achieving superior long‐term ...
Lijun Ma   +5 more
wiley   +1 more source

Transition Metal Compounds for Aqueous Ammonium‐Ion Batteries: Storage Mechanisms and Electrode Design

open access: yesAdvanced Science, EarlyView.
Aqueous ammonium‐ion batteries leverage hydrogen‐bond‐mediated NH4+ storage in tunable transition metal compounds. Despite progress in Mn‐, V‐, Mo‐, and W‐based compounds, 2D LDHs, and MXenes, challenges like structural instability and slow kinetics persist. Future advances require robust host design, mechanistic understanding via operando studies, and
Can Li   +6 more
wiley   +1 more source

Electro‐Chemo‐Mechanical Coupling in Composite Cathodes of Sulfide‐Based All‐Solid‐State Batteries: Pathways, Degradation, and Design Rules

open access: yesAdvanced Science, EarlyView.
This review provides an integrated framework for achieving superior electrochemical performance in sulfide‐based all‐solid‐state batteries. It first delineates mechano‐electrochemical failure modes of cathode active materials and solid electrolytes, then outlines engineering principles for particle morphology, electronic and ionic conduction, and ...
Gawon Song   +4 more
wiley   +1 more source

Empowering Carbon Fibers With Ti3C2Tx MXene: A Paradigm Shift Toward Integrated Structure‐Function Composites

open access: yesAdvanced Science, EarlyView.
This review comprehensively outlines how Ti3C2Tx MXene transforms carbon fiber from a structural component into a multifunctional platform. We systematically detail cutting‐edge modification strategies and showcase exceptional performance in EMI shielding, energy storage, smart sensing, and beyond.
Hongshuo Cao   +6 more
wiley   +1 more source

Tuning Desolvation Kinetics with Perovskite‐Type Ion‐Conductive Modulators toward Low‐Temperature Zn Metal Batteries

open access: yesAdvanced Science, EarlyView.
A strategy of constructing perovskite‐type ion‐conductive interphase modulation layer is proposed to break down ion‐dipole interactions of [Zn(H2O)x]2+ to promote Zn2+ desolvation and diffusion kinetics against dendrite growth and active water‐induced hydrogen evolution reactions.
Wenbin Wang   +14 more
wiley   +1 more source

Scalable Upcycling of Spent Lithium‐Ion Battery Anodic Graphite to Electronic‐Grade Graphene

open access: yesAdvanced Science, EarlyView.
Graphite anodes from spent lithium‐ion batteries are upcycled into electronic‐grade graphene nanoplatelets for highly conductive screen printing inks (> 104 S m−1). Screen‐printed micro‐supercapacitors confirm the utility of the upcycled graphene (1.78 mF/cm2 capacitance for > 10 000 cycles). Life cycle assessment and techno‐economic analysis highlight
Janan Hui   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy