Results 171 to 180 of about 26,087 (296)
The Prussian Blue Analogue molecular magnet KMnFeHCF is demonstrated as a high‐performance cathode for ultra‐fast aqueous ammonium‐ion batteries. A full cell using KMnFeHCF and graphite delivers ~71 mAh g−1 at 1.25 A g−1 and ~51 mAh g−1 at 2.2 A g−1, retaining 50% capacity after 1850 cycles. Its scalability, cycling stability, and low cost offer strong
Nilasha Maiti +5 more
wiley +1 more source
Durable Lithium Metal Anodes Enabled by {110}-Textured Epitaxy on a LiF@Ag Commensurate Heterostructure. [PDF]
Zhang L +7 more
europepmc +1 more source
In the aqueous AlCl3 electrolyte of aluminum‐metal batteries, the introduction of LaCl3 adjusts the solvation structure of Al3+ and enhances its diffusion level. The oxide precipitate formed by La3+ covers the aluminum metal anode and effectively alleviates corrosion reactions, thereby improving the cycling stability of the battery.
Yanshen Gao +12 more
wiley +1 more source
Deciphering failure paths in lithium metal anodes by electrochemical curve fingerprints. [PDF]
Piao Z +11 more
europepmc +1 more source
Effective Solid Electrolyte Interphase Formation on Lithium Metal Anodes by Mechanochemical Modification. [PDF]
Wellmann J +7 more
europepmc +1 more source
The transition between the spinel and rock‐salt phases induces irreversible structural changes in disordered LiNi0.5Mn1.5O4, thereby preventing it from fully releasing its electrochemical capacity during charge/discharge cycling. Abstract High‐voltage disordered spinel LiNi0.5Mn1.5O4 is a promising cathode material for high power density in lithium‐ion
Xingqi Chang +9 more
wiley +1 more source
Designing High-Rate and High-Capacity Lithium Metal Anodes: Unveiling Critical Role of Carbon Nanotube Structure. [PDF]
Zhou Y +5 more
europepmc +1 more source
Forced Disorder in the Solid Solution Li3P-Li2S: A New Class of Fully Reduced Solid Electrolytes for Lithium Metal Anodes. [PDF]
Szczuka C +10 more
europepmc +1 more source
Nanodiamond additives are dispersed in the aqueous electrolyte to organize water molecules, suppress gas evolution and metal corrosion, and guide zinc to deposit more uniformly. Together with enhanced thermal conductivity for fast heat removal, this strategy reduces temperature rise and degradation, enabling safer, more durable rechargeable zinc metal ...
Jiayan Zhu +7 more
wiley +1 more source
Progress in Modeling and Applications of Solid Electrolyte Interphase Layers for Lithium Metal Anodes. [PDF]
Wei Z, Zheng W, Li Y, Huang S.
europepmc +1 more source

