Results 131 to 140 of about 91,322 (303)

Synthesis of LiNixFe1−xPO4 solid solution as cathode materials for lithium ion batteries [PDF]

open access: yes, 2013
Meng, Ying Shirley   +3 more
core   +1 more source

Colloidal Heterostructures Enable Interfacial Transport of Immiscible Molecules in Printable Organohydrogels

open access: yesAdvanced Materials, EarlyView.
Multiphase printable organohydrogels with tunable microstructures are developed to control molecular transport pathways for immiscible cargo. The tortuosity and domain size of the colloidal phases are tuned by adjusting temperature and shear during processing, which enables the tailoring of diffusion kinetics due to different transport pathways.
Riley E. Dowdy‐Green   +4 more
wiley   +1 more source

Comprehensive Understanding of Accelerated Kinetics Driven by Anion–Diluent Dynamics Enabling Wide Temp Operation in Dual‐Ion Batteries

open access: yesAdvanced Materials, EarlyView.
The transient interactions between TFSI− anions and a diluent within an anion‐dictated electrolyte are revealed, which can reduce interfacial reorganization energy, thereby accelerating ion kinetics and markedly facilitating sustainable anion storage in high‐voltage graphite cathodes for dual‐ion batteries at fast charge and wide temperature range ...
Sungho Kim   +9 more
wiley   +1 more source

Synergistic Coupling of Host and Electrolyte Achieving 1270 Wh L−1 in Anode‐Free Lithium Metal Batteries

open access: yesAdvanced Materials, EarlyView.
A synergistic combination of a highly reversible host and a commercially viable carbonate‐rich electrolyte enables simultaneous stabilization of both anode and cathode interfaces in anode‐free lithium metal batteries. This integrated strategy delivers exceptional reversibility and a record volumetric energy density of 1270 Wh L−1 (including package) in
Dong‐Yeob Han   +9 more
wiley   +1 more source

Operando monitoring of dendrite formation in lithium metal batteries via ultrasensitive tilted fiber Bragg grating sensors

open access: yesLight: Science & Applications
Lithium (Li) dendrite growth significantly deteriorates the performance and shortens the operation life of lithium metal batteries. Capturing the intricate dynamics of surface localized and rapid mass transport at the electrolyte–electrode interface of ...
Xile Han   +10 more
doaj   +1 more source

Prussian Blue Analog as a Functional Additive for Restoring Sulfide Solid Electrolytes: Enhancing Moisture Stability in All‐Solid‐State Batteries

open access: yesAdvanced Materials, EarlyView.
This work unveils the multifunctional roles of Prussian blue analogs (PBAs) within the LPSCl matrix, where they act as effective moisture scavengers and enable partial recovery of electrochemical performance. In addition, owing to their relatively soft nature, PBAs help mitigate interfacial stress and thereby enhance electrochemical stability and ...
Sumin Ko   +3 more
wiley   +1 more source

In situ high‐quality LiF/Li3N inorganic and phenyl‐based organic solid electrolyte interphases for advanced lithium–oxygen batteries

open access: yesCarbon Energy
Lithium metal shows a great advantage as the most promising anode for its unparalleled theoretical specific capacity and extremely low electrochemical potential.
Qianyan Wang   +9 more
doaj   +1 more source

Correlated Dual‐Gradient Electrodes Enabling Spatially Synchronized Sulfur Redox in High‐Mass‐Loading Li–S Batteries Under High Current Densities

open access: yesAdvanced Materials, EarlyView.
Coupling a dual‐gradient carbonized framework with Fe2O3/Fe‐N‐C catalytic sites enables spatially synchronized sulfur redox across the entire electrode thickness in high‐mass‐loading Li–S batteries. This synergistic structural–catalytic design effectively mitigates concentration, ohmic, and electrochemical polarization, thereby achieving high‐capacity ...
Yuxuan Zhang   +6 more
wiley   +1 more source

Impact of Anode to Cathode Crossover in Lithium‐metal Batteries With High‐Nickel Cathodes

open access: yesAdvanced Materials, EarlyView.
Anode‐to‐cathode chemical crossover is identified as a critical degradation mechanism in lithium‐metal batteries. Full‐cell experiments with high‐Ni layered oxide cathodes and localized high‐concentration electrolytes reveal accelerated cathode impedance growth and CEI thickening driven by lithium‐metal anodes. The findings underscore the importance of
Zezhou Guo   +2 more
wiley   +1 more source

Sustainable Reuse of FePO4 for Charged‐State Lithium Metal Battery with High Energy Density and Stable Cycle Performance

open access: yesAdvanced Energy & Sustainability Research
A lithium metal–free battery (LMFB, so‐called anode‐free batteries) offers an ideal configuration of lithium metal batteries (LMB), theoretically achieving the highest energy density by eliminating excess lithium metal on the negative electrode. However,
Fumiyasu Nozaki   +2 more
doaj   +1 more source

Home - About - Disclaimer - Privacy