Results 221 to 230 of about 74,268 (297)

Structure‐Dependent Resonant Frequency Engineering of Textile Tactile Sensors Toward Rapid and Precise Braille Recognition Surpassing Human Sensation

open access: yesAdvanced Science, EarlyView.
A resonant frequency engineering strategy is proposed to modulate the sensibility of piezoresistive textile‐based tactile sensor. It achieves simultaneous detection of static pressure and dynamic vibrations across an unprecedented bandwidth of 5–600 Hz, surpassing human sensation, therefore enables rapid and precise braille recognition.
Xianhong Zheng   +17 more
wiley   +1 more source

Utilizing Cooperative Proton–Electron Mixed Conduction Induced via Chemical Dedoping of Self‐Doped Poly(3,4‐ethylenedioxythiophene) Nanofilms for In‐Material Physical Reservoirs

open access: yesAdvanced Science, EarlyView.
This study demonstrates a new concept for high‐performance in‐material physical reservoirs (PRs). An intrinsic and cooperative ion–electron state, induced by chemical dedoping in self‐doped poly(3,4‐ethylenedioxythiophene) (S‐PEDOT) nanofilms, enhances the performance of in‐material PRs.
Yuya Ishizaki‐Betchaku   +10 more
wiley   +1 more source

Ferroelectric‐Polarization‐Driven Structural Engineering of Bi3Nb17O47 Anodes for High‐Performance Lithium‐Ion Batteries

open access: yesAdvanced Science, EarlyView.
A transformative ferroelectric‐polarization strategy is employed to overcome the intrinsic limitations of tungsten bronze (TTB)‐type anode materials in metal‐ion batteries, using Bi3Nb17O47 as a model system. By exploiting the non‐centrosymmetric crystal structure and field‐induced ionic displacements, controlled structural engineering with ...
Xiaoming Lou   +10 more
wiley   +1 more source

Topological Defects in Carbon Matrix Are Efficiently Constructed by Joule Thermal Shock for Catalyzing the Growth of Carbon Nanotubes

open access: yesAdvanced Science, EarlyView.
The Joule thermal shock technique ensures the efficient construction of topological defects in the carbon matrix because the instantaneous cooling suppresses the graphitization rearrangement of the heteroatom removal sites. This topological defect carbon can activate carbon source molecules by electron transfer, and further grow into carbon nanotubes ...
Bin Wang   +9 more
wiley   +1 more source

Passivation‐Induced Species Dynamics and Microstructural Evolution in Solid‐State Lithium–Sulfur Cathodes

open access: yesAdvanced Science, EarlyView.
The formation of insulating Li2S during discharge in solid‐state lithium–sulfur batteries passivate reaction sites and limits sulfur utilization. In this work, a microstructure‐resolved modeling framework coupling transport and reaction kinetics is developed to predict charge–discharge behavior and reveal particle‐scale species evolution and incomplete
Arpan K. Sharma   +4 more
wiley   +1 more source

Interfacially Coupled and Synergistic Effect of Ag/Co3O4‐C Nanocomposites for Enhanced Oxygen Reduction (ORR) and Evolution (OER) Reaction

open access: yesAdvanced Science, EarlyView.
Ag/Co3O4–C nanocomposites display well‐resolved lattice fringes and synergistic Ag/Co3O4 heterointerfaces that enhance charge transfer and active‐site exposure. The structural design enables superior bifunctional ORR/OER performance in alkaline media by promoting efficient adsorption and turnover of oxygen intermediates within an optimized ...
Adnan Qaseem   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy