Results 71 to 80 of about 74,268 (297)

Tuning the Electronic Structure and Spin State of Fe─N─C Catalysts Using an Axial Oxygen Ligand and Fe Clusters for High‐Efficiency Rechargeable Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou   +8 more
wiley   +1 more source

Powering the Future: A Cobalt‐Based Catalyst for Longer‐Lasting Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A novel N‐doped graphitic shell‐encapsulated Co catalyst reveals superior bifunctional ORR/OER activity in alkaline media, empowering outstanding liquid and quasi‐solid‐state ZAB activity. The system delivers long‐term durability, a peak power density of 127 mW cm−2 and successfully powers an LED and a mini fan.
Manami Banerjee   +10 more
wiley   +1 more source

Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen [PDF]

open access: yes, 1993
An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and ...
Hagedorn, Norman H.
core   +1 more source

Laser‐Induced Microfabrication of Carbon Nanostructure: Processing Mechanism and Application for Next‐Generation Battery Technology

open access: yesAdvanced Functional Materials, EarlyView.
The article reviews laser‐processed carbons from various precursors, processing mechanism and their application in advanced batteries. The laser process is chemical free, fast, and scalable, enabling improved battery performance and stability for Li, Na, and Zn battery technologies.
Sujit Deshmukh   +2 more
wiley   +1 more source

A Review of High-Energy Density Lithium-Air Battery Technology: Investigating the Effect of Oxides and Nanocatalysts

open access: yesJournal of Chemistry, 2022
In vehicles that require a lot of electricity, such as electric vehicles, it is necessary to use high-energy batteries. Among the developed batteries, the lithium-ion battery has shown better performance. This battery has an energy density of 10 equal to
Asep Suryatna   +8 more
doaj   +1 more source

Solar Heating Enhanced Selective Recovery of Metal Ions Through Flowing Electrodes Enabled by Hybrid Carbon Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
A new electrochemical system based on a microporous hybrid of carbon nanoplatelets and nanotubes to selectively capture Ni2+ from wastewater is constructed. The system temperature rises rapidly when irradiated with sunlight, which enhances the Ni2+ removal rate by 250% and the selectivity by 53%, and the energy consumption is also reduced by 51 ...
Ziquan Wang   +11 more
wiley   +1 more source

Modeling Nucleation and Growth of Zinc Oxide During Discharge of Primary Zinc-Air Batteries [PDF]

open access: yes, 2017
Metal-air batteries are among the most promising next-generation energy storage devices. Relying on abundant materials and offering high energy densities, potential applications lie in the fields of electro-mobility, portable electronics, and stationary ...
Horstmann, Birger   +3 more
core   +2 more sources

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

How Voltage Drops are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes

open access: yes, 2015
Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode-surface film interface in response to the voltage, which adds complexity to the "electric ...
Leenheer, Andrew, Leung, Kevin
core   +2 more sources

Dual‐Functional Li2B4O7 Coating on Carbon Fibers for Enhanced Li+ Transport and Stability in Sulfide All‐Solid‐State Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A dual‐functional Li2B4O7 coating on carbon fibers is designed to resolve the critical interfacial degradation in sulfide all‐solid‐state batteries. The conformal layer acts as a physical barrier to suppress parasitic reactions while its unique dielectric properties simultaneously facilitate Li+ transport.
Yeonghoon Kim   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy