Results 271 to 280 of about 2,380,854 (358)

Synchrotron Radiation for Quantum Technology

open access: yesAdvanced Functional Materials, EarlyView.
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader   +10 more
wiley   +1 more source

Cu‐Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper

open access: yesAdvanced Functional Materials, EarlyView.
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan   +9 more
wiley   +1 more source

Local Drug Delivery Systems for Cancer Therapy. [PDF]

open access: yesACS Appl Mater Interfaces
Jiang Z   +9 more
europepmc   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

MnI‐Functionalized Covalent Organic Framework as Efficient Electrocatalyst for CO2 Reduction in a Catholyte‐Free Zero‐Gap Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies   +8 more
wiley   +1 more source

Rational Fine‐Tuning of MOF Pore Metrics: Enhanced SO2 Capture and Sensing with Optimal Multi‐Site Interactions

open access: yesAdvanced Functional Materials, EarlyView.
A pore tuning strategy to amplify the multi‐site MOF‐SO2 interactions is proposed to achieve an enhanced trace SO2 capture and chemiresistive sensing in highly stable isostructural DMOFs by annelating benzene rings. This work provides a facile strategy to achieve tailor‐made stable MOF materials for specific multifunctional applications.
Shanghua Xing   +9 more
wiley   +1 more source

Enhancing CoFe Catalysts with V2CTX MXene‐Derived Materials for Anion Exchange Membrane Electrolyzers

open access: yesAdvanced Functional Materials, EarlyView.
MXene dervied CoFe composites show increased initial Oxygen Evolution Reaction (OER) activity compared to the pure CoFe and MXene in an Anion Exchange Membrane device. Vanadium vacancies in the MXene plays a role in increased OER activity and hinders Fe leaching in the AEM device over using the pure V2C MXene as a support material for the CoFe ...
Can Kaplan   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy