Results 101 to 110 of about 358,679 (321)

Dynamics of Human Walking

open access: yes, 2004
The problem of biped locomotion at steady speeds is discussed through a Lagrangian formulation developed for velocity-dependent, body driving forces. Human walking on a level surface is analyzed in terms of the data on the resultant ground-reaction force
G. A. Cavanga   +6 more
core   +2 more sources

Ultrasound-driven piezoelectric current activates spinal cord neurocircuits and restores locomotion in rats with spinal cord injury [PDF]

open access: gold, 2020
Shuai Li   +6 more
openalex   +1 more source

Electricity Generation From Ambient Water Evaporation in the Absence of Sunlight via PVA‐Based Porous Hydrogels

open access: yesAdvanced Functional Materials, EarlyView.
In this article, a water‐evaporation driven energy harvester is devised that works even in the absence of sunlight. This is achieved by combining PVA hydrogel with thermoelectrics (TEG) to directly capture energy from water evaporation. Under mild conditions (RH 40%, T of 26 °C, and 2.8 m s−1 wind), 1.71 mW (1.02 W m−2) power can be generated, >3 fold ...
Zichen Gong, Ady Suwardi, Jing Cao
wiley   +1 more source

An Experimental Evaluation of Bayesian Optimization on Bipedal Locomotion

open access: yes, 2013
© 2014 IEEE.The design of gaits and corresponding control policies for bipedal walkers is a key challenge in robot locomotion. Even when a viable controller parametrization already exists, finding near-optimal parameters can be daunting.
Calandra, R   +3 more
core   +1 more source

Advancing Electronic Application of Coordination Solids: Enhancing Electron Transport and Device Integration via Surface‐Mounted MOFs (SURMOFs)

open access: yesAdvanced Functional Materials, EarlyView.
The layer‐by‐layer (LbL) assembly of coordination solids, enabled by the surface‐mounted metal‐organic framework (SURMOF) platform, is on the cusp of generating the organic counterpart of the epitaxy of inorganics. The programmable and sequential SURMOF protocol, optimized by machine learning (ML), is suited for accessing high‐quality thin films of ...
Zhengtao Xu   +2 more
wiley   +1 more source

Understanding and Optimizing Li Substitution in P2‐Type Sodium Layered Oxides for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous 
Mingfeng Xu   +5 more
wiley   +1 more source

Versatile Cell Penetrating Peptide for Multimodal CRISPR Gene Editing in Primary Stem Cells

open access: yesAdvanced Functional Materials, EarlyView.
CRISPR machinery in diverse molecular formats (DNA, RNA, and ribonucleic protein) is complexed into nanoparticles with the cell‐friendly arginine‐alanine‐leucine‐alanine (RALA) cell‐penetrating peptide. Nanoparticles are delivered to primary mesenchymal stem cells ex vivo or locally in vivo to facilitate multimodal CRISPR gene editing. This RALA‐CRISPR
Joshua P. Graham   +9 more
wiley   +1 more source

Genes and quadrupedal locomotion in humans [PDF]

open access: bronze, 2008
Nicholas Humphrey   +2 more
openalex   +1 more source

Copper Doping Enhances the Activity and Selectivity of Atomically Precise Ag44 Nanoclusters for Photocatalytic CO2 Reduction

open access: yesAdvanced Functional Materials, EarlyView.
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy