Results 11 to 20 of about 62 (60)
A New Graphical Representation of the Old Algebraic Structure
The most recent advancements in algebra and graph theory enable us to ask a straightforward question: what practical use does this graph connected with a mathematical system have in the real world? With the use of algebraic approaches, we may now tackle a wide range of graph theory‐related problems.
Muhammad Nadeem +4 more
wiley +1 more source
Some Algebraic Properties of the Wilson Loop
In this article, some algebraic properties of the Wilson loop have been investigated in a broad manner. These properties include identities, autotopisms, and implications. We use some equivalent conditions to study the behavior of holomorphism of this loop. Under the shadow of this holomorphism, we are able to observe coincident loops.
Han Li +4 more
wiley +1 more source
[Retracted] Double Weak Hopf Quiver and Its Path Coalgebra
The main input of this research is the introduction of the concept of double weak Hopf quiver (DWHQ). In addition, the structures of weak Hopf algebra (WHA) are obtained through path coalgebra of the proposed quivers. Furthermore, the module and comodule structures on the said WHA are discussed.
Muhammad Naseer Khan +6 more
wiley +1 more source
On Characterization of Graphs Structures Connected with Some Algebraic Properties
In this paper, we have characterized graph structures connected with some algebraic properties. Also, this paper is actually the concatenation of graph theory and algebra. We have introduced left and right inverse graphs of antiautomorphic inverse property loops.
Rongbing Huang +5 more
wiley +1 more source
Abstract The history of the geometry of Double Field Theory is the history of string theorists' effort to tame higher geometric structures. In this spirit, the first part of this paper will contain a brief overview on the literature of geometry of DFT, focusing on the attempts of a global description. In [1] we proposed that the global doubled space is
Luigi Alfonsi
wiley +1 more source
Weak Hopf Algebra and Its Quiver Representation
This study induced a weak Hopf algebra from the path coalgebra of a weak Hopf quiver. Moreover, it gave a quiver representation of the said algebra which gives rise to the various structures of the so‐called weak Hopf algebra through the quiver. Furthermore, it also showed the canonical representation for each weak Hopf quiver.
Muhammad Naseer Khan +5 more
wiley +1 more source
Commuting Pairs in Quasigroups
ABSTRACT A quasigroup is a pair ( Q , ∗ ), where Q is a nonempty set and ∗ is a binary operation on Q such that for every ( a , b ) ∈ Q 2, there exists a unique ( x , y ) ∈ Q 2 such that a ∗ x = b = y ∗ a. Let ( Q , ∗ ) be a quasigroup. A pair ( x , y ) ∈ Q 2 is a commuting pair of ( Q , ∗ ) if x ∗ y = y ∗ x.
Jack Allsop, Ian M. Wanless
wiley +1 more source
Canonical Labeling of Latin Squares in Average‐Case Polynomial Time
ABSTRACT A Latin square of order n$$ n $$ is an n×n$$ n\times n $$ matrix in which each row and column contains each of n$$ n $$ symbols exactly once. For ε>0$$ \varepsilon >0 $$, we show that with high probability a uniformly random Latin square of order n$$ n $$ has no proper subsquare of order larger than n1/2log1/2+εn$$ {n}^{1/2}{\log}^{1/2 ...
Michael J. Gill +2 more
wiley +1 more source
Extensions of Steiner Triple Systems
ABSTRACT In this article, we study extensions of Steiner triple systems by means of the associated Steiner loops. We recognize that the set of Veblen points of a Steiner triple system corresponds to the center of the Steiner loop. We investigate extensions of Steiner loops, focusing in particular on the case of Schreier extensions, which provide a ...
Giovanni Falcone +2 more
wiley +1 more source
Nonassociative algebras: a framework for differential geometry
A nonassociative algebra endowed with a Lie bracket, called a torsion algebra, is viewed as an algebraic analog of a manifold with an affine connection. Its elements are interpreted as vector fields and its multiplication is interpreted as a connection. This provides a framework for differential geometry on a formal manifold with a formal connection. A
Lucian M. Ionescu
wiley +1 more source

